C ++
Longueur totale: 9059, superficie totale: 27469, échecs: 13.
Remarque: Le score inclut les pénalités d'échec.
Exemple de sortie:
a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34
------ae
| |
|---c
b||-g
|d|
f |
i---|
k---| h
| j
|---m
l | t
o-n|
|s-r
|-|
p q
Length: 39, Area: 150.
a 6 b 6 c 6 d 6 e 6 f 6 g 6 h 8 i 9 j 9 k 9 l 12 m 12 n 13 o 14 p 15 q 15 r 15 s 17 t 17 u 17 v 17 w 17 x 20 y 23 z 26
------a n|--w
|d-||---k|-o|
| g|b |--m --x
|-|c ||--r|
||f l|-q |
||--j u--|--s|-
e|-i |p| y|
h v t z-
Length: 56, Area: 120.
Sortie complète: http://pastebin.com/raw.php?i=spBUidBV
N'aimez-vous pas simplement les solutions de force brute? C'est un peu plus qu'un simple algorithme de retour en arrière: notre travailleur infatigable se déplace sur la carte, plaçant des fusibles et des feux d'artifice si nécessaire, tout en testant tous les mouvements possibles à tout moment. Eh bien, presque --- nous restreignons l'ensemble des mouvements et abandonnons tôt les états non optimaux afin que cela ne prenne pas une durée insupportable (et, en particulier, pour qu'il se termine.) Une attention particulière est prise pour ne pas créer de cycles ou involontaires. chemins et de ne pas revenir en arrière de la même façon que nous sommes venus, il est donc garanti que nous ne visitons pas le même état deux fois. Même ainsi, trouver une solution optimale peut prendre un certain temps, donc nous finissons par abandonner l'optimisation d'une solution si elle prend trop de temps.
Cet algorithme a encore une certaine marge. D'une part, de meilleures solutions peuvent être trouvées en augmentant les FRUSTRATION
paramètres. Il n'y a pas de GAB de compétition, mais ces chiffres peuvent être augmentés si et quand ...
Compiler avec: g++ fireworks.cpp -ofireworks -std=c++11 -pthread -O3
.
Exécuter avec: ./fireworks
.
Lit l'entrée de STDIN et écrit la sortie dans STDOUT (peut-être hors service.)
/* Magic numbers */
#define THREAD_COUNT 2
/* When FRUSTRATION_MOVES moves have passed since the last solution was found,
* the last (1-FRUSTRATION_STATES_BACKOFF)*100% of the backtracking states are
* discarded and FRUSTRATION_MOVES is multiplied by FRUSTRATION_MOVES_BACKOFF.
* The lower these values are, the faster the algorithm is going to give up on
* searching for better solutions. */
#define FRUSTRATION_MOVES 1000000
#define FRUSTRATION_MOVES_BACKOFF 0.8
#define FRUSTRATION_STATES_BACKOFF 0.5
#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <thread>
#include <mutex>
#include <string>
#include <sstream>
#include <cassert>
using namespace std;
/* A tile on the board. Either a fuse, a firework, an empty tile or an
* out-of-boudns tile. */
struct tile {
/* The tile's value, encoded the "obvious" way (i.e. '-', '|', 'a', etc.)
* Empty tiles are encoded as '\0' and OOB tiles as '*'. */
char value;
/* For fuse tiles, the time at which the fuse is lit. */
int time;
operator char&() { return value; }
operator const char&() const { return value; }
bool is_fuse() const { return value == '-' || value == '|'; }
/* A tile is vacant if it's empty or OOB. */
bool is_vacant() const { return !value || value == '*'; }
/* Prints the tile. */
template <typename C, typename T>
friend basic_ostream<C, T>& operator<<(basic_ostream<C, T>& os,
const tile& t) {
return os << (t.value ? t.value : ' ');
}
};
/* Fireworks have the same encoding as tiles. */
typedef tile firework;
typedef vector<firework> fireworks;
/* The fuse map. It has physical dimensions (its bounding-box) but is
* conceptually infinite (filled with empty tiles.) */
class board {
/* The tiles, ordered left-to-right top-to-bottom. */
vector<tile> p_data;
/* The board dimensions. */
int p_width, p_height;
/* The total fuse length. */
int p_length;
public:
board(): p_width(0), p_height(0), p_length(0) {}
/* Physical dimensions. */
int width() const { return p_width; }
int height() const { return p_height; }
int area() const { return width() * height(); }
/* Total fuse length. */
int length() const { return p_length; }
/* Returns the tile at (x, y). If x or y are negative, returns an OOB
* tile. */
tile get(int x, int y) const {
if (x < 0 || y < 0)
return {'*'};
else if (x >= width() || y >= height())
return {'\0'};
else
return p_data[y * width() + x];
}
/* Sets the tile at (x, y). x and y must be nonnegative and the tile at
* (x, y) must be empty. */
board& set(int x, int y, const tile& t) & {
assert(x >= 0 && y >= 0);
assert(!get(x, y));
if (x >= width() || y >= height()) {
int new_width = x >= width() ? x + 1 : width();
int new_height = y >= height() ? y + 1 : height();
vector<tile> temp(new_width * new_height, {'\0'});
for (int l = 0; l < height(); ++l)
copy(
p_data.begin() + l * width(),
p_data.begin() + (l + 1) * width(),
temp.begin() + l * new_width
);
p_data.swap(temp);
p_width = new_width;
p_height = new_height;
}
p_data[y * width() + x] = t;
if (t.is_fuse())
++p_length;
return *this;
}
board&& set(int x, int y, const tile& t) && { return move(set(x, y, t)); }
/* Prints the board. */
template <typename C, typename T>
friend basic_ostream<C, T>& operator<<(basic_ostream<C, T>& os,
const board& b) {
for (int y = 0; y < b.height(); ++y) {
for (int x = 0; x < b.width(); ++x)
os << b.get(x, y);
os << endl;
}
return os;
}
};
/* A state of the tiling algorithm. */
struct state {
/* The current board. */
board b;
/* The next firework to tile. */
fireworks::const_iterator fw;
/* The current location. */
int x, y;
/* The current movement direction. 'N'orth 'S'outh 'E'ast, 'W'est or
* 'A'ny. */
char dir;
};
/* Adds a state to the state-stack if its total fuse length and bounding-box
* area are not worse than the current best ones. */
void add_state(vector<state>& states, int max_length, int max_area,
state&& new_s) {
if (new_s.b.length() < max_length ||
(new_s.b.length() == max_length && new_s.b.area() <= max_area)
)
states.push_back(move(new_s));
}
/* Adds the state after moving in a given direction, if it's a valid move. */
void add_movement(vector<state>& states, int max_length, int max_area,
const state& s, char dir) {
int x = s.x, y = s.y;
char parallel_fuse;
switch (dir) {
case 'E': if (s.dir == 'W') return; ++x; parallel_fuse = '|'; break;
case 'W': if (s.dir == 'E') return; --x; parallel_fuse = '|'; break;
case 'S': if (s.dir == 'N') return; ++y; parallel_fuse = '-'; break;
case 'N': if (s.dir == 'S') return; --y; parallel_fuse = '-'; break;
}
const tile t = s.b.get(s.x, s.y), nt = s.b.get(x, y);
assert(t.is_fuse());
if (nt.is_fuse() && !(t == parallel_fuse && nt == parallel_fuse))
add_state(states, max_length, max_area, {s.b, s.fw, x, y, dir});
}
/* Adds the state after moving in a given direction and tiling a fuse, if it's a
* valid move. */
void add_fuse(vector<state>& states, int max_length, int max_area,
const state& s, char dir, char fuse) {
int x = s.x, y = s.y;
int sgn;
bool horz;
switch (dir) {
case 'E': ++x; sgn = 1; horz = true; break;
case 'W': --x; sgn = -1; horz = true; break;
case 'S': ++y; sgn = 1; horz = false; break;
case 'N': --y; sgn = -1; horz = false; break;
}
if (s.b.get(x, y))
/* Tile is not empty. */
return;
/* Make sure we don't create cycles or reconnect a firework. */
const tile t = s.b.get(s.x, s.y);
assert(t.is_fuse());
if (t == '-') {
if (horz) {
if (fuse == '-') {
if (!s.b.get(x + sgn, y).is_vacant() ||
s.b.get(x, y - 1) == '|' ||
s.b.get(x, y + 1) == '|')
return;
} else {
if (s.b.get(x + sgn, y) == '-' ||
!s.b.get(x, y - 1).is_vacant() ||
!s.b.get(x, y + 1).is_vacant())
return;
}
} else {
if (!s.b.get(x, y + sgn).is_vacant() ||
s.b.get(x - 1, y) == '-' ||
s.b.get(x + 1, y) == '-')
return;
}
} else {
if (!horz) {
if (fuse == '|') {
if (!s.b.get(x, y + sgn).is_vacant() ||
s.b.get(x - 1, y) == '-' ||
s.b.get(x + 1, y) == '-')
return;
} else {
if (s.b.get(x, y + sgn) == '|' ||
!s.b.get(x - 1, y).is_vacant() ||
!s.b.get(x + 1, y).is_vacant())
return;
}
} else {
if (!s.b.get(x + sgn, y).is_vacant() ||
s.b.get(x, y - 1) == '|' ||
s.b.get(x, y + 1) == '|')
return;
}
}
/* Ok. */
add_state(
states,
max_length,
max_area,
{board(s.b).set(x, y, {fuse, t.time + 1}), s.fw, x, y, dir}
);
}
/* Adds the state after adding a firework at the given direction, if it's a
* valid move. */
void add_firework(vector<state>& states, int max_length, int max_area,
const state& s, char dir) {
int x = s.x, y = s.y;
int sgn;
bool horz;
switch (dir) {
case 'E': ++x; sgn = 1; horz = true; break;
case 'W': --x; sgn = -1; horz = true; break;
case 'S': ++y; sgn = 1; horz = false; break;
case 'N': --y; sgn = -1; horz = false; break;
}
if (s.b.get(x, y))
/* Tile is not empty. */
return;
/* Make sure we don't run into an undeliberate fuse. */
if (horz) {
if (s.b.get(x + sgn, y) == '-' || s.b.get(x, y - 1) == '|' ||
s.b.get(x, y + 1) == '|')
return;
} else {
if (s.b.get(x, y + sgn) == '|' || s.b.get(x - 1, y) == '-' ||
s.b.get(x + 1, y) == '-')
return;
}
/* Ok. */
add_state(
states,
max_length,
max_area,
/* After adding a firework, we can move in any direction. */
{board(s.b).set(x, y, {*s.fw}), s.fw + 1, s.x, s.y, 'A'}
);
}
void add_possible_moves(vector<state>& states, int max_length, int max_area,
const state& s) {
/* We add the new states in reverse-desirability order. The most
* (aesthetically) desirable states are added last. */
const tile t = s.b.get(s.x, s.y);
assert(t.is_fuse());
/* Move in all (possible) directions. */
for (char dir : "WENS")
if (dir) add_movement(states, max_length, max_area, s, dir);
/* If the fuse is too short for the next firework, keep adding fuse. */
if (t.time < s.fw->time) {
if (t == '-') {
add_fuse(states, max_length, max_area, s, 'N', '|');
add_fuse(states, max_length, max_area, s, 'S', '|');
add_fuse(states, max_length, max_area, s, 'W', '|');
add_fuse(states, max_length, max_area, s, 'W', '-');
add_fuse(states, max_length, max_area, s, 'E', '|');
add_fuse(states, max_length, max_area, s, 'E', '-');
} else {
add_fuse(states, max_length, max_area, s, 'W', '-');
add_fuse(states, max_length, max_area, s, 'E', '-');
add_fuse(states, max_length, max_area, s, 'N', '-');
add_fuse(states, max_length, max_area, s, 'N', '|');
add_fuse(states, max_length, max_area, s, 'S', '-');
add_fuse(states, max_length, max_area, s, 'S', '|');
}
} else if (t.time == s.fw->time) {
/* If we have enough fuse for the next firework, place the firework (if
* possible) and don't add more fuse, or else we'll never finish... */
if (t == '-') {
add_firework(states, max_length, max_area, s, 'W');
add_firework(states, max_length, max_area, s, 'E');
} else {
add_firework(states, max_length, max_area, s, 'N');
add_firework(states, max_length, max_area, s, 'S');
}
}
}
void thread_proc(mutex& lock, int& total_length, int& total_area,
int& failures) {
fireworks fw;
vector<state> states;
while (true) {
/* Read input. */
string input;
{
lock_guard<mutex> lg(lock);
while (!cin.eof() && input.empty())
getline(cin, input);
if (input.empty())
break;
}
fw.clear();
int length = 0, area;
{
stringstream is;
is << input;
while (!is.eof()) {
char c;
int t;
if (is >> c >> t) {
/* Fireworks must be sorted by launch time. */
assert(fw.empty() || t >= fw.back().time);
fw.push_back({c, t});
length += t;
}
}
assert(!fw.empty());
area = fw.back().time * fw.back().time;
}
/* Add initial state. */
states.push_back({board().set(0, 0, {'-', 1}), fw.begin(), 0, 0, 'A'});
board solution;
int moves = 0;
int frustration_moves = FRUSTRATION_MOVES;
while (!states.empty()) {
/* Check for solutions (all fireworks consumed.) */
while (!states.empty() && states.back().fw == fw.end()) {
state& s = states.back();
/* Did we find a better solution? */
if (solution.area() == 0 || s.b.length() < length ||
(s.b.length() == length && s.b.area() < area)
) {
solution = move(s.b);
moves = 0;
length = solution.length();
area = solution.area();
}
states.pop_back();
}
/* Expand the top state. */
if (!states.empty()) {
state s = move(states.back());
states.pop_back();
add_possible_moves(states, length, area, s);
}
/* Getting frustrated? */
++moves;
if (moves > frustration_moves) {
/* Get rid of some data. */
states.erase(
states.begin() + states.size() * FRUSTRATION_STATES_BACKOFF,
states.end()
);
frustration_moves *= FRUSTRATION_MOVES_BACKOFF;
moves = 0;
}
}
/* Print solution. */
{
lock_guard<mutex> lg(lock);
cout << input << endl;
if (solution.area())
cout << solution;
else {
cout << "FAILED!" << endl;
++failures;
}
cout << "Length: " << length <<
", Area: " << area <<
"." << endl << endl;
total_length += length;
total_area += area;
}
}
}
int main(int argc, const char* argv[]) {
thread threads[THREAD_COUNT];
mutex lock;
int total_length = 0, total_area = 0, failures = 0;
for (int i = 0; i < THREAD_COUNT; ++i)
threads[i] = thread(thread_proc, ref(lock), ref(total_length),
ref(total_area), ref(failures));
for (int i = 0; i < THREAD_COUNT; ++i)
threads[i].join();
cout << "Total Length: " << total_length <<
", Total Area: " << total_area <<
", Failures: " << failures <<
"." << endl;
}
Python
Longueur totale: 17387, superficie totale: 62285, échecs: 44.
Exemple de sortie:
a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34
------a
|----f
|---c
b|||---h
|dg |
e |-j
|---k
i |
|---m
l |-o
|--p
n |--s
|-r
q|
t
Length: 45, Area: 345.
Sortie complète: http://pastebin.com/raw.php?i=mgiqXCRK
Pour référence, voici une approche beaucoup plus simple. Il essaie de connecter des feux d'artifice à une seule ligne de fusible principale, créant une forme "d'escalier". Si un feu d'artifice ne peut pas se connecter directement à la ligne principale (ce qui se produit lorsque deux feux d'artifice ou plus s'allument en même temps), il retrace la ligne principale à la recherche d'un point où il peut se ramifier perpendiculairement vers le bas ou vers la droite (et échoue si un tel point n'existe pas.)
Sans surprise, il fait pire que le solveur de force brute, mais pas par une énorme marge. Honnêtement, je m'attendais à ce que la différence soit un peu plus grande.
Exécuter avec: python fireworks.py
.
from __future__ import print_function
import sys
total_length = total_area = failures = 0
for line in sys.stdin:
# Read input.
line = line.strip()
if line == "": continue
fws = line.split(' ')
# The fireworks are a list of pairs of the form (<letter>, <time>).
fws = [(fws[i], int(fws[i + 1])) for i in xrange(0, len(fws), 2)]
# The board is a dictionary of the form <coord>: <tile>.
# The first tile marks the "starting point" and is out-of-bounds.
board = {(-1, 0): '*'}
# The tip of the main "staircase" fuse.
tip_x, tip_y = -1, 0
tip_time = 0
# We didn't fail. Yet...
failed = False
for (fw, fw_time) in fws:
dt = fw_time - tip_time
# Can we add the firework to the main fuse line?
if dt > 0:
# We can. Alternate the direction to create a "staircase" pattern.
if board[(tip_x, tip_y)] == '-': dx, dy = 0, 1; fuse = '|'
else: dx, dy = 1, 0; fuse = '-'
x, y = tip_x, tip_y
tip_x += dt * dx
tip_y += dt * dy
tip_time += dt
else:
# We can't. Trace the main fuse back until we find a point where we
# can thread, or fail if we reach the starting point.
x, y = tip_x, tip_y
while board[(x, y)] != '*':
horz = board[(x, y)] == '-'
if horz: dx, dy = 0, 1; fuse = '|'
else: dx, dy = 1, 0; fuse = '-'
if dt > 0 and (x + dx, y + dy) not in board: break
if horz: x -= 1
else: y -= 1
dt += 1
if board[(x, y)] == '*':
failed = True
break
# Add the fuse and firework.
for i in xrange(dt):
x += dx; y += dy
board[(x, y)] = fuse
board[(x + dx, y + dy)] = fw
# Print output.
print(line)
if not failed:
max_x, max_y = (max(board, key=lambda p: p[i])[i] + 1 for i in (0, 1))
for y in xrange(max_y):
for x in xrange(max_x):
print(board.get((x, y), ' '), end = "")
print()
length = len(board) - len(fws) - 1
area = max_x * max_y
else:
print("FAILED!")
failures += 1
length = sum(map(lambda fw: fw[1], fws))
area = fws[-1][1] ** 2
print("Length: %d, Area: %d.\n" % (length, area))
total_length += length; total_area += area
print("Total Length: %d, Total Area: %d, Failures: %d." %
(total_length, total_area, failures))