Fortran 90
J'utilise la méthode CORDIC avec un tableau pré-tabulé de 60 valeurs d'arctan (voir l'article Wiki pour plus de détails sur la raison pour laquelle cela est nécessaire).
Ce code nécessite un fichier, trig.in
avec toutes les valeurs des sauts de ligne à stocker dans le même dossier que l'exécutable Fortran. Compiler ceci est,
gfortran -O3 -o file file.f90
où file
est le nom de fichier que vous lui donnez (ce SinCosTan.f90
serait probablement plus simple, bien qu'il ne soit pas nécessaire de faire correspondre le nom du programme et le nom du fichier). Si vous avez le compilateur Intel, je vous recommande d'utiliser
ifort -O3 -xHost -o file file.f90
car le -xHost
(qui n'existe pas pour gfortran) fournit des optimisations de niveau supérieur disponibles pour votre processeur.
Mes tests me donnaient environ 10 microsecondes par calcul lors du test de 1000 angles aléatoires en utilisant gfortran 4.4 (4.7 ou 4.8 est disponible dans les dépôts Ubuntu) et environ 9.5 microsecondes en utilisant ifort 12.1. Le test de seulement 10 angles aléatoires se traduira par un temps indéterminable à l'aide des routines Fortran, car la routine de synchronisation est précise à la milliseconde et les calculs simples indiquent qu'il devrait prendre 0,100 millisecondes pour exécuter les 10 nombres.
EDIT Apparemment, je chronométrais IO, ce qui (a) rendait le chronométrage plus long que nécessaire et (b) est contraire au point n ° 6. J'ai mis à jour le code pour refléter cela. J'ai également découvert que l'utilisation d'un kind=8
entier avec le sous-programme intrinsèque system_clock
donne une précision en microsecondes.
Avec ce code mis à jour, je calcule maintenant chaque ensemble de valeurs des fonctions trigonométriques en environ 0,3 microsecondes (les chiffres significatifs à la fin varient d'un cycle à l'autre, mais il oscille constamment près de 0,31 us), une réduction significative par rapport à la précédente. itération qui chronomètre IO.
program SinCosTan
implicit none
integer, parameter :: real64 = selected_real_kind(15,307)
real(real64), parameter :: PI = 3.1415926535897932384626433832795028842
real(real64), parameter :: TAU = 6.2831853071795864769252867665590057684
real(real64), parameter :: half = 0.500000000000000000000_real64
real(real64), allocatable :: trigs(:,:), angles(:)
real(real64) :: time(2), times, b
character(len=12) :: tout
integer :: i,j,ierr,amax
integer(kind=8) :: cnt(2)
open(unit=10,file='trig.out',status='replace')
open(unit=12,file='CodeGolf/trig.in',status='old')
! check to see how many angles there are
i=0
do
read(12,*,iostat=ierr) b
if(ierr/=0) exit
i=i+1
enddo !-
print '(a,i0,a)',"There are ",i," angles"
amax = i
! allocate array
allocate(trigs(3,amax),angles(amax))
! rewind the file then read the angles into the array
rewind(12)
do i=1,amax
read(12,*) angles(i)
enddo !- i
! compute trig functions & time it
times = 0.0_real64
call system_clock(cnt(1)) ! <-- system_clock with an 8-bit INT can time to us
do i=1,amax
call CORDIC(angles(i), trigs(:,i), 40)
enddo !- i
call system_clock(cnt(2))
times = times + (cnt(2) - cnt(1))
! write the angles to the file
do i=1,amax
do j=1,3
if(trigs(j,i) > 1d100) then
write(tout,'(a1)') 'n'
elseif(abs(trigs(j,i)) > 1.0) then
write(tout,'(f10.6)') trigs(j,i)
elseif(abs(trigs(j,i)) < 0.1) then
write(tout,'(f10.8)') trigs(j,i)
else
write(tout,'(f9.7)') trigs(j,i)
endif
write(10,'(a)',advance='no') tout
enddo !- j
write(10,*)" "
enddo !- i
print *,"computation took",times/real(i,real64),"us per angle"
close(10); close(12)
contains
!> @brief compute sine/cosine/tangent
subroutine CORDIC(a,t,n)
real(real64), intent(in) :: a
real(real64), intent(inout) :: t(3)
integer, intent(in) :: n
! local variables
real(real64), parameter :: deg2rad = 1.745329252e-2
real(real64), parameter :: angles(60) = &
[ 7.8539816339744830962e-01_real64, 4.6364760900080611621e-01_real64, &
2.4497866312686415417e-01_real64, 1.2435499454676143503e-01_real64, &
6.2418809995957348474e-02_real64, 3.1239833430268276254e-02_real64, &
1.5623728620476830803e-02_real64, 7.8123410601011112965e-03_real64, &
3.9062301319669718276e-03_real64, 1.9531225164788186851e-03_real64, &
9.7656218955931943040e-04_real64, 4.8828121119489827547e-04_real64, &
2.4414062014936176402e-04_real64, 1.2207031189367020424e-04_real64, &
6.1035156174208775022e-05_real64, 3.0517578115526096862e-05_real64, &
1.5258789061315762107e-05_real64, 7.6293945311019702634e-06_real64, &
3.8146972656064962829e-06_real64, 1.9073486328101870354e-06_real64, &
9.5367431640596087942e-07_real64, 4.7683715820308885993e-07_real64, &
2.3841857910155798249e-07_real64, 1.1920928955078068531e-07_real64, &
5.9604644775390554414e-08_real64, 2.9802322387695303677e-08_real64, &
1.4901161193847655147e-08_real64, 7.4505805969238279871e-09_real64, &
3.7252902984619140453e-09_real64, 1.8626451492309570291e-09_real64, &
9.3132257461547851536e-10_real64, 4.6566128730773925778e-10_real64, &
2.3283064365386962890e-10_real64, 1.1641532182693481445e-10_real64, &
5.8207660913467407226e-11_real64, 2.9103830456733703613e-11_real64, &
1.4551915228366851807e-11_real64, 7.2759576141834259033e-12_real64, &
3.6379788070917129517e-12_real64, 1.8189894035458564758e-12_real64, &
9.0949470177292823792e-13_real64, 4.5474735088646411896e-13_real64, &
2.2737367544323205948e-13_real64, 1.1368683772161602974e-13_real64, &
5.6843418860808014870e-14_real64, 2.8421709430404007435e-14_real64, &
1.4210854715202003717e-14_real64, 7.1054273576010018587e-15_real64, &
3.5527136788005009294e-15_real64, 1.7763568394002504647e-15_real64, &
8.8817841970012523234e-16_real64, 4.4408920985006261617e-16_real64, &
2.2204460492503130808e-16_real64, 1.1102230246251565404e-16_real64, &
5.5511151231257827021e-17_real64, 2.7755575615628913511e-17_real64, &
1.3877787807814456755e-17_real64, 6.9388939039072283776e-18_real64, &
3.4694469519536141888e-18_real64, 1.7347234759768070944e-18_real64]
real(real64), parameter :: kvalues(33) = &
[ 0.70710678118654752440e+00_real64, 0.63245553203367586640e+00_real64, &
0.61357199107789634961e+00_real64, 0.60883391251775242102e+00_real64, &
0.60764825625616820093e+00_real64, 0.60735177014129595905e+00_real64, &
0.60727764409352599905e+00_real64, 0.60725911229889273006e+00_real64, &
0.60725447933256232972e+00_real64, 0.60725332108987516334e+00_real64, &
0.60725303152913433540e+00_real64, 0.60725295913894481363e+00_real64, &
0.60725294104139716351e+00_real64, 0.60725293651701023413e+00_real64, &
0.60725293538591350073e+00_real64, 0.60725293510313931731e+00_real64, &
0.60725293503244577146e+00_real64, 0.60725293501477238499e+00_real64, &
0.60725293501035403837e+00_real64, 0.60725293500924945172e+00_real64, &
0.60725293500897330506e+00_real64, 0.60725293500890426839e+00_real64, &
0.60725293500888700922e+00_real64, 0.60725293500888269443e+00_real64, &
0.60725293500888161574e+00_real64, 0.60725293500888134606e+00_real64, &
0.60725293500888127864e+00_real64, 0.60725293500888126179e+00_real64, &
0.60725293500888125757e+00_real64, 0.60725293500888125652e+00_real64, &
0.60725293500888125626e+00_real64, 0.60725293500888125619e+00_real64, &
0.60725293500888125617e+00_real64 ]
real(real64) :: beta, c, c2, factor, poweroftwo, s
real(real64) :: s2, sigma, sign_factor, theta, angle
integer :: j
! scale to radians
beta = a*deg2rad
! ensure angle is shifted to appropriate range
call angleShift(beta, -PI, theta)
! check for signs
if( theta < -half*PI) then
theta = theta + PI
sign_factor = -1.0_real64
else if( half*PI < theta) then
theta = theta - PI
sign_factor = -1.0_real64
else
sign_factor = +1.0_real64
endif
! set up some initializations...
c = 1.0_real64
s = 0.0_real64
poweroftwo = 1.0_real64
angle = angles(1)
! run for 30 iterations (should be good enough, need testing)
do j=1,n
sigma = merge(-1.0_real64, +1.0_real64, theta < 0.0_real64)
factor = sigma*poweroftwo
c2 = c - factor*s
s2 = factor*c + s
c = c2
s = s2
! update remaining angle
theta = theta - sigma*angle
poweroftwo = poweroftwo*0.5_real64
if(j+1 > 60) then
angle = angle * 0.5_real64
else
angle = angles(j+1)
endif
enddo !- j
if(n > 0) then
c = c*Kvalues(min(n,33))
s = s*Kvalues(min(n,33))
endif
c = c*sign_factor
s = s*sign_factor
t = [s, c, s/c]
end subroutine CORDIC
subroutine angleShift(alpha, beta, gamma)
real(real64), intent(in) :: alpha, beta
real(real64), intent(out) :: gamma
if(alpha < beta) then
gamma = beta - mod(beta - alpha, TAU) + TAU
else
gamma = beta + mod(alpha - beta, TAU)
endif
end subroutine angleShift
end program SinCosTan