Python: 1.688.293 1.579.182 1.524.054 1.450.842 1.093.195 mouvements
La méthode principale consiste main_to_help_best
à déplacer certains éléments sélectionnés de la pile principale vers la pile d'assistance. Il a un drapeau everything
qui définit si nous voulons qu'il déplace tout dans le spécifié destination
, ou si nous voulons garder uniquement le plus grand dans destination
le reste dans l'autre assistant.
En supposant que nous passons à l' dst
aide de l'aide helper
, la fonction peut être décrite comme suit:
- Trouvez les positions des plus grands éléments
- Déplacez tout au-dessus de l'élément le plus grand en haut pour
helper
récursivement
- Déplacer le plus grand élément vers
dst
- Repousser de
helper
à principal
- Répétez 2-4 jusqu'à ce que les plus gros éléments soient
dst
- une. Si
everything
est défini, déplacez récursivement les éléments du principal vers dst
b. Sinon, déplacez récursivement les éléments principaux vershelper
L'algorithme de tri principal ( sort2
dans mon code) appellera ensuite main_to_help_best
avec everything
set to False
, puis ramènera le plus grand élément vers main, puis déplacera tout de l'assistant vers main, le gardant trié.
Plus d'explications intégrées sous forme de commentaires dans le code.
Fondamentalement, les principes que j'ai utilisés sont:
- Gardez un assistant pour contenir le ou les éléments maximum
- Gardez un autre assistant pour contenir tout autre élément
- Ne faites pas autant de mouvements inutiles que possible
Le principe 3 est implémenté en ne comptant pas le mouvement si la source est la destination précédente (c'est-à-dire que nous venons de déplacer principal vers help1, puis nous voulons passer de help1 à help2), et de plus, nous réduisons le nombre de mouvements de 1 si nous le ramène à sa position d'origine (c.-à-d. principal pour aider1 puis aide1 pour principal). De plus, si les n
mouvements précédents déplacent tous le même entier, nous pouvons réellement réorganiser ces n
mouvements. Nous en profitons donc également pour réduire encore le nombre de mouvements.
Ceci est valable car nous connaissons tous les éléments de la pile principale, donc cela peut être interprété comme voyant à l'avenir que nous allons reculer l'élément, nous ne devrions pas faire ce mouvement.
Sample run (les piles sont affichées de bas en haut - donc le premier élément est le bas):
Longueur 1
Mouvements: 0
Tâches: 6
Max: 0 ([1])
Moyenne: 0,000
Longueur 2
Mouvements: 60
Tâches: 36
Max: 4 ([1, 2])
Moyenne: 1.667
Longueur 3
Déplace: 1030
Tâches: 216
Max: 9 ([2, 3, 1])
Moyenne: 4.769
Longueur 4
Déplace: 11765
Tâches: 1296
Max: 19 ([3, 4, 2, 1])
Moyenne: 9.078
Longueur 5
Déplace: 112325
Tâches: 7776
Max: 33 ([4, 5, 3, 2, 1])
Moyenne: 14.445
Longueur 6
Déplace: 968015
Tâches: 46656
Max: 51 ([5, 6, 4, 3, 2, 1])
Moyenne: 20.748
--------------
Global
Déménagements: 1093195
Tâches: 55986
Moyenne: 19.526
Nous pouvons voir que le pire des cas est lorsque le plus grand élément est placé sur le deuxième fond, tandis que les autres sont triés. Dans le pire des cas, nous pouvons voir que l'algorithme est O (n ^ 2).
Le nombre de coups est évidemment minimum pour n=1
et n=2
comme nous pouvons le voir sur le résultat, et je crois que c'est aussi minimum pour des valeurs plus grandes de n
, bien que je ne puisse pas le prouver.
Plus d'explications sont dans le code.
from itertools import product
DEBUG = False
def sort_better(main, help1, help2):
# Offset denotes the bottom-most position which is incorrect
offset = len(main)
ref = list(reversed(sorted(main)))
for idx, ref_el, real_el in zip(range(len(main)), ref, main):
if ref_el != real_el:
offset = idx
break
num_moves = 0
# Move the largest to help1, the rest to help2
num_moves += main_to_help_best(main, help1, help2, offset, False)
# Move the largest back to main
num_moves += push_to_main(help1, main)
# Move everything (sorted in help2) back to main, keep it sorted
num_moves += move_to_main(help2, main, help1)
return num_moves
def main_to_help_best(main, dst, helper, offset, everything=True):
"""
Moves everything to dst if everything is true,
otherwise move only the largest to dst, and the rest to helper
"""
if offset >= len(main):
return 0
max_el = -10**10
max_idx = -1
# Find the location of the top-most largest element
for idx, el in enumerate(main[offset:]):
if el >= max_el:
max_idx = idx+offset
max_el = el
num_moves = 0
# Loop from that position downwards
for max_idx in range(max_idx, offset-1, -1):
# Processing only at positions with largest element
if main[max_idx] < max_el:
continue
# The number of elements above this largest element
top_count = len(main)-max_idx-1
# Move everything above this largest element to helper
num_moves += main_to_help_best(main, helper, dst, max_idx+1)
# Move the largest to dst
num_moves += move(main, dst)
# Move back the top elements
num_moves += push_to_main(helper, main, top_count)
# Here, the largest elements are in dst, the rest are in main, not sorted
if everything:
# Move everything to dst on top of the largest
num_moves += main_to_help_best(main, dst, helper, offset)
else:
# Move everything to helper, not with the largest
num_moves += main_to_help_best(main, helper, dst, offset)
return num_moves
def verify(lst, moves):
if len(moves) == 1:
return True
moves[1][0][:] = lst
for src, dst, el in moves[1:]:
move(src, dst)
return True
def equal(*args):
return len(set(str(arg.__init__) for arg in args))==1
def move(src, dst):
dst.append(src.pop())
el = dst[-1]
if not equal(dst, sort.lst) and list(reversed(sorted(dst))) != dst:
raise Exception('HELPER NOT SORTED: %s, %s' % (src, dst))
cur_len = len(move.history)
check_idx = -1
matched = False
prev_src, prev_dst, prev_el = move.history[check_idx]
# As long as the element is the same as previous elements,
# we can reorder the moves
while el == prev_el:
if equal(src, prev_dst) and equal(dst, prev_src):
del(move.history[check_idx])
matched = True
break
elif equal(src, prev_dst):
move.history[check_idx][1] = dst
matched = True
break
elif equal(dst, prev_src):
move.history[check_idx][0] = src
matched = True
break
check_idx -= 1
prev_src, prev_dst, prev_el = move.history[check_idx]
if not matched:
move.history.append([src, dst, el])
return len(move.history)-cur_len
def push_to_main(src, main, amount=-1):
num_moves = 0
if amount == -1:
amount = len(src)
if amount == 0:
return 0
for i in range(amount):
num_moves += move(src, main)
return num_moves
def push_to_help(main, dst, amount=-1):
num_moves = 0
if amount == -1:
amount = len(main)
if amount == 0:
return 0
for i in range(amount):
num_moves += move(main, dst)
return num_moves
def help_to_help(src, dst, main, amount=-1):
num_moves = 0
if amount == -1:
amount = len(src)
if amount == 0:
return 0
# Count the number of largest elements
src_len = len(src)
base_el = src[src_len-amount]
base_idx = src_len-amount+1
while base_idx < src_len and base_el == src[base_idx]:
base_idx += 1
# Move elements which are not the largest to main
num_moves += push_to_main(src, main, src_len-base_idx)
# Move the largest to destination
num_moves += push_to_help(src, dst, base_idx+amount-src_len)
# Move back from main
num_moves += push_to_help(main, dst, src_len-base_idx)
return num_moves
def move_to_main(src, main, helper, amount=-1):
num_moves = 0
if amount == -1:
amount = len(src)
if amount == 0:
return 0
# Count the number of largest elements
src_len = len(src)
base_el = src[src_len-amount]
base_idx = src_len-amount+1
while base_idx < src_len and base_el == src[base_idx]:
base_idx += 1
# Move elements which are not the largest to helper
num_moves += help_to_help(src, helper, main, src_len-base_idx)
# Move the largest to main
num_moves += push_to_main(src, main, base_idx+amount-src_len)
# Repeat for the rest of the elements now in the other helper
num_moves += move_to_main(helper, main, src, src_len-base_idx)
return num_moves
def main():
num_tasks = 0
num_moves = 0
for n in range(1, 7):
start_moves = num_moves
start_tasks = num_tasks
max_move = -1
max_main = []
for lst in map(list,product(*[[1,2,3,4,5,6]]*n)):
num_tasks += 1
if DEBUG: print lst, [], []
sort.lst = lst
cur_lst = lst[:]
move.history = [(None, None, None)]
help1 = []
help2 = []
moves = sort_better(lst, help1, help2)
if moves > max_move:
max_move = moves
max_main = cur_lst
num_moves += moves
if DEBUG: print '%s, %s, %s (moves: %d)' % (cur_lst, [], [], moves)
if list(reversed(sorted(lst))) != lst:
print 'NOT SORTED: %s' % lst
return
if DEBUG: print
# Verify that the modified list of moves is still valid
verify(cur_lst, move.history)
end_moves = num_moves - start_moves
end_tasks = num_tasks - start_tasks
print 'Length %d\nMoves: %d\nTasks: %d\nMax: %d (%s)\nAverage: %.3f\n' % (n, end_moves, end_tasks, max_move, max_main, 1.0*end_moves/end_tasks)
print '--------------'
print 'Overall\nMoves: %d\nTasks: %d\nAverage: %.3f' % (num_moves, num_tasks, 1.0*num_moves/num_tasks)
# Old sort method, which assumes we can only see the top of the stack
def sort(main, max_stack, a_stack):
height = len(main)
largest = -1
num_moves = 0
a_stack_second_el = 10**10
for i in range(height):
if len(main)==0:
break
el = main[-1]
if el > largest: # We found a new maximum element
if i < height-1: # Process only if it is not at the bottom of main stack
largest = el
if len(a_stack)>0 and a_stack[-1] < max_stack[-1] < a_stack_second_el:
a_stack_second_el = max_stack[-1]
# Move aux stack to max stack then reverse the role
num_moves += help_to_help(a_stack, max_stack, main)
max_stack, a_stack = a_stack, max_stack
if DEBUG: print 'Moved max_stack to a_stack: %s, %s, %s (moves: %d)' % (main, max_stack, a_stack, num_moves)
num_moves += move(main, max_stack)
if DEBUG: print 'Moved el to max_stack: %s, %s, %s (moves: %d)' % (main, max_stack, a_stack, num_moves)
elif el == largest:
# The maximum element is the same as in max stack, append
if i < height-1: # Only if the maximum element is not at the bottom
num_moves += move(main, max_stack)
elif len(a_stack)==0 or el <= a_stack[-1]:
# Current element is the same as in aux stack, append
if len(a_stack)>0 and el < a_stack[-1]:
a_stack_second_el = a_stack[-1]
num_moves += move(main, a_stack)
elif a_stack[-1] < el <= a_stack_second_el:
# Current element is larger, but smaller than the next largest element
# Step 1
# Move the smallest element(s) in aux stack into max stack
amount = 0
while len(a_stack)>0 and a_stack[-1] != a_stack_second_el:
num_moves += move(a_stack, max_stack)
amount += 1
# Step 2
# Move all elements in main stack that is between the smallest
# element in aux stack and current element
while len(main)>0 and max_stack[-1] <= main[-1] <= el:
if max_stack[-1] < main[-1] < a_stack_second_el:
a_stack_second_el = main[-1]
num_moves += move(main, a_stack)
el = a_stack[-1]
# Step 3
# Put the smallest element(s) back
for i in range(amount):
num_moves += move(max_stack, a_stack)
else: # Find a location in aux stack to put current element
# Step 1
# Move all elements into max stack as long as it will still
# fulfill the Hanoi condition on max stack, AND
# it should be greater than the smallest element in aux stack
# So that we won't duplicate work, because in Step 2 we want
# the main stack to contain the minimum element
while len(main)>0 and a_stack[-1] < main[-1] <= max_stack[-1]:
num_moves += move(main, max_stack)
# Step 2
# Pick the minimum between max stack and aux stack, move to main
# This will essentially sort (in reverse) the elements into main
# Don't move to main the element(s) found before Step 1, because
# we want to move them to aux stack
while True:
if len(a_stack)>0 and a_stack[-1] < max_stack[-1]:
num_moves += move(a_stack, main)
elif max_stack[-1] < el:
num_moves += move(max_stack, main)
else:
break
# Step 3
# Move all elements in main into aux stack, as long as it
# satisfies the Hanoi condition on aux stack
while max_stack[-1] == el:
num_moves += move(max_stack, a_stack)
while len(main)>0 and main[-1] <= a_stack[-1]:
if main[-1] < a_stack[-1] < a_stack_second_el:
a_stack_second_el = a_stack[-1]
num_moves += move(main, a_stack)
if DEBUG: print main, max_stack, a_stack
# Now max stack contains largest element(s), aux stack the rest
num_moves += push_to_main(max_stack, main)
num_moves += move_to_main(a_stack, main, max_stack)
return num_moves
if __name__ == '__main__':
main()