ML / (Strict) Haskell en Java
Cela provient d'un projet réel réel. Il utilise des structures de données immuables persistantes et utilise la récursivité même lorsque cela n'est pas nécessaire. En réalité, cela ressemble plus à Kore (langage implémenté par le projet) en Java, mais le style est fondamentalement identique à ML. Mais la philosophie de Kore est que l'auteur ne devrait pas formater son code, de sorte qu'aucun code Java n'est formaté non plus (il est automatiquement mis en forme par eclipse).
déposer n éléments d'une liste :
public static <T> List<T> drop(List<T> l, Integer n) {
return n == 0 ? l : drop(l.cons().tail, n - 1);
}
Dans ML / Haskell, où vous voulez que les motifs correspondent pour extraire la tête et la queue, vous dites ici list.cons().x
et list.cons().tail
.
insérer un élément dans une liste :
public static <T> List<T> insert(List<T> l, Integer i, T x) {
if (i == 0)
return cons(x, l);
return cons(l.cons().x, insert(l.cons().tail, i - 1, x));
}
List est défini littéralement comment le type de données algébrique serait défini. Voici une version avec le passe-partout généré par eclipse supprimé:
public final class List<T> {
public static final class Nil<T> {
}
public static final class Cons<T> {
public final T x;
public final List<T> tail;
public Cons(T x, List<T> tail) {
if (x == null)
throw new RuntimeException("null head");
if (tail == null)
throw new RuntimeException("null tail");
this.x = x;
this.tail = tail;
}
}
private final Nil<T> nil;
private final Cons<T> cons;
private List(Nil<T> nil, Cons<T> cons) {
this.nil = nil;
this.cons = cons;
}
public boolean isEmpty() {
return nil != null;
}
public Nil<T> nil() {
if (nil == null)
throw new RuntimeException("not nil");
return nil;
}
public Cons<T> cons() {
if (cons == null)
throw new RuntimeException("not cons");
return cons;
}
public static <T> List<T> cons(Cons<T> cons) {
if (cons == null)
throw new RuntimeException("constructor received null");
return new List<T>(null, cons);
}
public static <T> List<T> nil(Nil<T> nil) {
if (nil == null)
throw new RuntimeException("constructor received null");
return new List<T>(nil, null);
}
}
Voici une structure de données cartographiques implémentée sous forme de trie :
public final class Map<K, V> {
private final Tree<Character, Optional<Pair<K, V>>> tree;
// keys are sorted in reverse order so entrySet can use cons instead of append
private final Comparer<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> comparer =
new PairLeftComparer<Character, Tree<Character, Optional<Pair<K, V>>>>(
new ReverseComparer<Character>(new CharacterComparer()));
private Map(Tree<Character, Optional<Pair<K, V>>> tree) {
this.tree = tree;
}
public static <K, V> Map<K, V> empty() {
return new Map<K, V>(new Tree<Character, Optional<Pair<K, V>>>(
OptionalUtils.<Pair<K, V>> nothing(),
ListUtils
.<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> nil()));
}
public Optional<V> get(K k) {
Tree<Character, Optional<Pair<K, V>>> t = tree;
for (char c : k.toString().toCharArray()) {
Tree<Character, Optional<Pair<K, V>>> t2 = getEdge(t, c);
if (t2 == null)
return nothing();
t = t2;
}
if (t.v.isNothing())
return nothing();
return some(t.v.some().x.y);
}
public Map<K, V> put(K k, V v) {
return new Map<K, V>(put(tree, k.toString(), v, k));
}
private Tree<Character, Optional<Pair<K, V>>> put(
Tree<Character, Optional<Pair<K, V>>> t, String s, V v, K k) {
if (s.equals(""))
return new Tree<Character, Optional<Pair<K, V>>>(some(Pair.pair(k, v)),
t.edges);
char c = s.charAt(0);
Tree<Character, Optional<Pair<K, V>>> t2 = getEdge(t, c);
if (t2 == null)
return new Tree<Character, Optional<Pair<K, V>>>(
t.v,
sort(
cons(
pair(
c,
put(new Tree<Character, Optional<Pair<K, V>>>(
OptionalUtils.<Pair<K, V>> nothing(),
ListUtils
.<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> nil()),
s.substring(1), v, k)), t.edges), comparer));
return new Tree<Character, Optional<Pair<K, V>>>(t.v, sort(
replace(pair(c, put(t2, s.substring(1), v, k)), t.edges), comparer));
}
private List<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> replace(
Pair<Character, Tree<Character, Optional<Pair<K, V>>>> edge,
List<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> edges) {
if (edges.cons().x.x.equals(edge.x))
return cons(edge, edges.cons().tail);
return cons(edges.cons().x, replace(edge, edges.cons().tail));
}
// I consider this O(1). There are a constant of 2^16 values of
// char. Either way it's unusual to have a large amount of
// edges since only ASCII chars are typically used.
private Tree<Character, Optional<Pair<K, V>>> getEdge(
Tree<Character, Optional<Pair<K, V>>> t, char c) {
for (Pair<Character, Tree<Character, Optional<Pair<K, V>>>> p : iter(t.edges))
if (p.x.equals(c))
return p.y;
return null;
}
public Map<K, V> delete(K k) {
return new Map<K, V>(delete(tree, k.toString()).x);
}
private Pair<Tree<Character, Optional<Pair<K, V>>>, Boolean> delete(
Tree<Character, Optional<Pair<K, V>>> t, String k) {
if (k.equals(""))
return pair(
new Tree<Character, Optional<Pair<K, V>>>(
OptionalUtils.<Pair<K, V>> nothing(), t.edges), t.edges.isEmpty());
char c = k.charAt(0);
Tree<Character, Optional<Pair<K, V>>> t2 = getEdge(t, c);
if (t2 == null)
return pair(t, false);
Pair<Tree<Character, Optional<Pair<K, V>>>, Boolean> p =
delete(t2, k.substring(1));
List<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> edges = nil();
for (Pair<Character, Tree<Character, Optional<Pair<K, V>>>> e : iter(t.edges))
if (!e.x.equals(c))
edges = cons(e, edges);
if (!p.y)
return pair(
new Tree<Character, Optional<Pair<K, V>>>(t.v, cons(pair(c, p.x),
edges)), false);
boolean oneEdge = t.edges.cons().tail.isEmpty();
return pair(new Tree<Character, Optional<Pair<K, V>>>(t.v, edges), oneEdge
&& t.v.isNothing());
}
public static class Entry<K, V> {
public Entry(K k, V v) {
this.k = k;
this.v = v;
}
public final K k;
public final V v;
}
public List<Entry<K, V>> entrySet() {
return entrySet(ListUtils.<Entry<K, V>> nil(), tree);
}
private List<Entry<K, V>> entrySet(List<Entry<K, V>> l,
Tree<Character, Optional<Pair<K, V>>> t) {
if (!t.v.isNothing()) {
Pair<K, V> p = t.v.some().x;
l = cons(new Entry<K, V>(p.x, p.y), l);
}
for (Pair<Character, Tree<Character, Optional<Pair<K, V>>>> e : iter(t.edges))
l = entrySet(l, e.y);
return l;
}
}
Les types commencent à prendre autant de place que le code. Par exemple, en mettre , la méthode a 302 caractères de types et 343 caractères de code (sans compter l' espace / nouvelle ligne).
.litcoffee
. Cela pourrait aider.