1, 2, 4, 8, 16,… 33?


24

Défi

Écrivez une fonction / un programme qui génère soit le n'e élément, soit les premiers néléments, dans la séquence de nombres bien connue:

         1, 2, 4, 8, 16 ...

Oh, attendez ... J'ai oublié les premiers chiffres:

1, 1, 1, 1, 2, 4, 8, 16 ...

Heck, je vais ajouter quelques autres pour faire bonne mesure:

1, 1, 1, 1, 2, 4, 8, 16, 33, 69, 146, 312, 673, 1463, 3202, 7050, 15605, 34705 ...

Les nombres sont des nombres catalans généralisés donnés par la formule (indexée zéro):

a(n+1)=a(n)+k=2n1a(k)a(n1k)

a(0)=a(1)=a(2)=a(3)=1

Il s'agit d' OEIS A004149 .

Vous pouvez choisir si vous souhaitez que la séquence soit indexée à zéro ou à un. La séquence doit bien sûr être la même, vous devez donc réécrire la formule si vous l'avez à un index.


Corrigez-moi si je me trompe ici, mais la modification d'une formule à un index est de passer a(n-1-k)à a(n-k), n'est -ce pas?
Sumner18

9
Cela me rappelle la loi forte des petits nombres
Luis Mendo

Réponses:


23

Python , 51 octets

f=lambda n,k=2:n<3or k<n and f(k)*f(n-k-2)+f(n,k+1)

Essayez-le en ligne!

Simplifie un peu la formule:

a(n)=k=2n1a(k)a(n2k)

a(1)=a(0)=a(1)=a(2)=1


8
Félicitations pour le 100k !!
Stewie Griffin

Puisque je suis également arrivé à cette solution indépendamment, je dois dire que le chemin vers elle est un peu cahoteux ...
Erik the Outgolfer

10

Perl 6 , 44 octets

{1,1,1,1,{sum @_[2..*]Z*@_[@_-4...0,0]}...*}

Essayez-le en ligne!

Bloc de code anonyme qui renvoie une séquence de valeurs infinie paresseuse. Cela implémente à peu près la séquence telle que décrite, avec le raccourci qu'il multiplie par zip tous les éléments jusqu'à présent après le deuxième élément avec l'inverse de la liste à partir du quatrième élément et en ajoutant un supplémentaire 1à la fin.

Explication:

{                                          }  # Anonymous code block
                                       ...*   # Create an infinite sequence
 1,1,1,1,                                     # Starting with four 1s
         {                            }       # Where each new element is:
          sum                                   # The sum of
              @_[2..*]                          # The second element onwards
                      Z*                        # Zip multiplied with
                        @_[@_-4...0  ]          # The fourth last element backwards
                                   ,0           # And 1

10

05AB1E , 14 13 11 octets

$ƒˆ¯Âø¨¨¨PO

Essayez-le en ligne!

Génère le nième élément, indexé 0.

$                # push 1 and the input
 ƒ               # repeat (input+1) times
  ˆ              #  add the top of the stack (initially 1) to the global array
   ¯             #  push the global array
    Â            #  and a reversed copy of it
     ø           #  zip the two together, giving a list of pairs
      ¨¨¨        #  drop the last 3 pairs
         P       #  take the product of each pair (or 1 if the list is empty)
          O      #  take the sum of those products
                 #  after the last iteration, this is implicitly output;
                 #  otherwise, it's added to the global array by the next iteration

7

JavaScript (ES6), 42 octets

Un port de la solution de xnor .

0 indexé.

f=(n,k=2)=>n<3||k<n&&f(k)*f(n+~++k)+f(n,k)

Essayez-le en ligne!


JavaScript (ES6),  83  75 octets

Une solution plus rapide, moins récursive, mais nettement plus longue.

0 indexé.

f=(n,i,a=[p=1])=>a[n]||f(n,-~i,[...a,p+=(h=k=>k<i&&a[k]*a[i-++k]+h(k))(2)])

Essayez-le en ligne!


7

Haskell, 49 43 39 octets

a n=max(sum[a k*a(n-2-k)|k<-[2..n-1]])1              

Essayez-le en ligne!

Pour n<3le sumest 0, le fait max ... 1monter à1 .

Edit: -6 octets grâce à @Jo King.



6

05AB1E , 17 13 octets

4Å1λ£₁λ¨Â¦¦s¦¦*O+

Pas plus court que la réponse 05AB1E existante , mais je voulais essayer la fonctionnalité récursive de la nouvelle version 05AB1E comme pratique pour moi-même. Pourrait peut-être être joué par quelques octets. EDIT: Et il peut en effet, voir la version récursive de @Grimy réponse 05AB1E s » ci - dessous, qui est de 13 octets .

Sort le premier narticles: Essayez-le en ligne .

Pourrait être changé en base 0 n'e élément lors du remplacement £par è: Essayez-le en ligne ;
ou une liste infinie en supprimant £: Essayez-le en ligne .

Explication:

Cela implémente la formule utilisée dans la description du défi comme ceci:
une(n)=une(n-1)+k=2n-1(une(k)une(n-1-k))

une(0)=une(1)=une(2)=une(3)=1

   λ               # Create a recursive environment,
    £              # to output the first (implicit) input amount of results after we're done
4Å1                # Start this recursive list with [1,1,1,1], thus a(0)=a(1)=a(2)=a(3)=1
                   # Within the recursive environment, do the following:
      λ            #  Push the list of values in the range [a(0),a(n)]
       ¨           #  Remove the last one to make the range [a(0),a(n-1)]
        Â          #  Bifurcate this list (short for Duplicate & Reverse copy)
         ¦¦        #  Remove the first two items of the reversed list,
                   #  so we'll have a list with the values in the range [a(n-3),a(0)]
           s       #  Swap to get the [a(0),a(n-1)] list again
            ¦¦     #  Remove the first two items of this list as well,
                   #  so we'll have a list with the values in the range [a(2),a(n-1)]
              *    #  Multiply the values at the same indices in both lists,
                   #  so we'll have a list with the values [a(n-3)*a(2),...,a(0)*a(n-1)]
               O   #  Take the sum of this list
               +  #  And add it to the a(n-1)'th value
                   # (afterwards the resulting list is output implicitly)

Version 13 octets de @Grimy (assurez-vous de voter pour sa réponse si vous ne l'avez pas encore fait):

1λ£λ1šÂ¨¨¨øPO

Sort le premier n items: Try it online.

Can again be changed to 0-based indexing or an infinite list instead:
- (0-based) indexing 1λèλ1šÂ¨¨¨øPO: Try it online;
- Infinite list λλ1šÂ¨¨¨øPO: Try it online. (Note that 2 bytes are saved here instead of 1, because the recursive environment starts with a(0)=1 by default.)

Explanation:

This instead implements the formula found by @xnor for his Python answer like this:
a(n)=k=2n1(a(k)a(n2k))

a(1)=a(0)=a(1)=a(2)=1

 λ             # Create a recursive environment,
  £            # to output the first (implicit) input amount of results after we're done
1              # Start this recursive list with 1, thus a(0)=1
               # Within the recursive environment, do the following:
   λ           #  Push the list of values in the range [a(0),a(n)]
    1š         #  Prepend 1 in front of this list
      Â        #  Bifurcate the list (short for Duplicate & Reverse copy)
       ¨¨¨     #  Remove (up to) the last three value in this reversed list
          ø    #  Create pairs with the list we bifurcated earlier
               #  (which will automatically remove any trailing items of the longer list)
           P   #  Get the product of each pair (which will result in 1 for an empty list)
            O  #  And sum the entire list
               # (afterwards the resulting list is output implicitly)

1
Interesting that this can solve a(1200) in 40 second on tio, while other recursive approaches time out for numbers n than 100...
Stewie Griffin

1
I also made (but didn't publish) a recursive version. It's 13 bytes for the first n terms, or 11 bytes for an infinite list. Special-casing a(n-1) costs a lot of bytes and isn't needed (see for example xnor's formula).
Grimmy

@Grimy Do you mind if I add your recursive solutions to my answer (crediting you of course)? I will leave my original answer as well. But it's nice to see the differences between the original formula and xnor's byte-saving formula. :)
Kevin Cruijssen

1
Sure, that's fine!
Grimmy

@StewieGriffin Yeah, I was also impressed by the speed of these recursive infinite functions. Maybe one of Elixir's strengths, and definitely due to the builtin lazy-loading. It calculates n=100 in 0.65 seconds, but when I disable lazy-loading, it will time out after 60 seconds instead, even for n=25.
Kevin Cruijssen


3

Jelly, 17 bytes

1WṪ;+¥×Uṫ3SƲ;@Ʋ⁸¡

Try it online!

A monadic link taking the zero-indexed n and returning the list of generalized Catalan numbers from 0 to n.




2

Japt, 19 17 16 bytes

Outputs the nth term, 1-indexed.

@Zí*Zz2)Ťx}g4Æ1

Try it

@Zí*Zz2)Ťx}g4Æ1     :Implicit input of integer U
@                    :Function taking an array as an argument via parameter Z
 Zí                  :  Interleave Z with
    Zz2              :  Z rotated clockwise by 180 degrees (simply reversing would be a bye shorter but would modify the original array)
   *                 :  Reduce each pair by multiplcation
       )             :  End interleave
        Å            :  Slice off the first element
         ¤           :  Slice off the first 2 elements
          x          :  Reduce by addition
           }         :End function
            g        :Pass the following as Z, push the result back to it and repeat until it has length U
             4Æ1     :Map the range [0,4) to 1s
                     :Implicit output of the last element

1

Haskell, 65 bytes

f a|a<4=1|z<-g[2..a]=sum$zipWith(*)z$reverse(1:g[0..a-4])
g=map f

Try it online!

You can use either f to get a single element of a sequence, or pass a list of values to g and get all the indexes for that list.


1

Forth (gforth), 99 81 bytes

: f recursive dup 4 > if 0 over 3 do over 1- i - f i f * + loop else 1 then nip ;

Try it online!

Output is nth term and input is 1-indexed

Edit: Saved 17 bytes by switching to xnor's formula. Saved another 1 byte by using 1-indexed

Code Explanation

: f                     \ start a new word definition
  recursive             \ mark that this word will be recursive
  dup 4 >               \ duplicate the input and check if it is greater than 4
  if                    \ if it is:
    0 over              \ create an accumulator and copy n to top of stack
    3 do                \ start counted loop from 3 to n-1
      over 1- i - f     \ recursively calculate f(n-1-i)
      i f               \ recursively calculate f(i)
      * +               \ multiply results and add to accumulator
    loop                \ end the counted loop        
  else                  \ otherwise, if n < 5
    1                   \ put 1 on the stack
  then                  \ end the if block
  nip                   \ drop n from the stack
;                       \ end the word definition

1

Charcoal, 26 bytes

F⁵⊞υ¹FN⊞υΣ✂E⮌υ×κ§υλ³→I§υ±⁴

Try it online! Link is to verbose version of code. Prints the 0-indexed nth number, although it calculates using 1-indexing internally. Explanation:

F⁵⊞υ¹

Start with a[0] = a[1] = a[2] = a[3] = a[4] = 1. Yes, this is 1-indexed, but then with an extra zeroth value. That's code golf for you.

FN

Calculate an additional n terms. This is overkill, but it makes finding the desired term easier when n<5.

⊞υΣ✂E⮌υ×κ§υλ³

For each term, compute the next term as the sum of the terms so far termwise multiplied by the reverse of the terms so far, excluding three terms.

This is a no-op used to trick Charcoal into parsing the 2-argument form of Slice, otherwise I would have to use a less golfy way of removing three terms.

I§υ±⁴

Output the 4th last term.


1

Pyth, 30 bytes

J*4]1VQ=+J+eJsPP*M.t,PJ_PJ0;<J

Try it online!

Returns the first n elements of the sequence.

J*4]1VQ=+J+eJsPP*M.t,PJ_PJ0;<JQ # Full program, last Q = input (implicitly added)
J*4]1                  # J = 4 * [1] (=[1,1,1,1])
VQ                     # for N in range(Q):
  =+J                  #  J +=
     +eJ               #   J[-1] + 
        s              #    sum(                           )
           *M          #     map(__operator_mul,          )
             .t      0 #      transpose(          , pad=0)
               ,       #       [       ,         ]
                PJ     #         J[:-1] 
                  _PJ  #                 J[1::-1]
<JQ                    # J[::Q]

Alternative: Replace < with @ to return the n-th element of the sequence, 0-indexed.



1

Octave, 73 bytes

g=(1:4).^0;for(i=3:(n=input('')))g(i+2)=g(4:i+1)*g(i-(2:i-1))';end;g(end)

Try it online!

-2 bytes thanks to Stewie Griffin. Once more, the imperative approach wins over the functional recursive approach. That one is shown below.

Octave, 75 bytes

f(f=@(a)@(n){@()sum(arrayfun(@(k)a(a)(k)*a(a)(n-2-k),2:n-1)),1}{2-(n>3)}())

Try it online!

Captcha wanted to verify I was a human when posting this. To be honest, I'm not so sure.


I can't see any obvious ways to shorten the loop approach... It looks pretty well golfed! Also, it's not often I see zero-based indexing in Octave :)
Stewie Griffin

@StewieGriffin Since the recursion has some offsets it doesn't really matter if you pick zero- or one indexing. I think maybe I could shave some bytes of if I did 2-indexing, but that seemed like cheating. Anyway, your intuition was right - somehow, this was indeed shorter in an anonymous recursive way. I think the main advantage is that it handles creating the four initial values very well because it just returns 1 for n<4.
Sanchises

1
@StewieGriffin Of course, good old matrix multiplication. Well done!
Sanchises


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.