introduction
Dans le monde étrange des nombres entiers, les diviseurs sont comme des actifs et ils utilisent pour appeler "riches" les nombres ayant plus de diviseurs que leur inversion, alors qu'ils appellent "pauvres" ceux qui ont moins de diviseurs que leur inversion.
Par exemple, le nombre a cinq diviseurs: , tandis que son renversement, , n'en a que quatre: .
Ainsi, est appelé un nombre riche , tandis que un nombre pauvre .
1042
Compte tenu de cette définition, nous pouvons créer les deux séquences entières suivantes de nombres riches et pauvres:
(here we list the first 25 elements of the sequences)
Index | Poor | Rich
-------|------|-------
1 | 19 | 10
2 | 21 | 12
3 | 23 | 14
4 | 25 | 16
5 | 27 | 18
6 | 29 | 20
7 | 41 | 28
8 | 43 | 30
9 | 45 | 32
10 | 46 | 34
11 | 47 | 35
12 | 48 | 36
13 | 49 | 38
14 | 53 | 40
15 | 57 | 50
16 | 59 | 52
17 | 61 | 54
18 | 63 | 56
19 | 65 | 60
20 | 67 | 64
21 | 69 | 68
22 | 81 | 70
23 | 82 | 72
24 | 83 | 74
25 | 86 | 75
... | ... | ...
Remarques :
- par "inversion" d'un nombre, nous entendons son inverse numérique , c'est-à-dire que ses chiffres en base 10 sont inversés. Cela signifie que les nombres se terminant par un ou plusieurs zéros auront une inversion "plus courte": par exemple, l'inversion de
1900
est0091
donc91
- nous excluons intentionnellement les nombres entiers ayant le même nombre de diviseurs que leur inversion c'est-à-dire ceux appartenant à OEIS: A062895
Défi
Compte tenu des deux séquences définies ci-dessus, votre tâche consiste à écrire un programme ou une fonction qui, étant donné un entier n
(vous pouvez choisir 0 ou 1 indexé), renvoie le nième nombre pauvre et le nième nombre riche.
Contribution
- Un nombre entier (
>= 0
si indexé 0 ou>= 1
si indexé 1)
Production
- 2 entiers, un pour la séquence pauvre et un pour la séquence riche, dans l'ordre que vous préférez tant qu'il est cohérent
Exemples :
INPUT | OUTPUT
----------------------------------
n (1-indexed) | poor rich
----------------------------------
1 | 19 10
18 | 63 56
44 | 213 112
95 | 298 208
4542 | 16803 10282
11866 | 36923 25272
17128 | 48453 36466
22867 | 61431 51794
35842 | 99998 81888
Règles générales:
- C'est le code-golf , donc la réponse la plus courte en octets l'emporte.
Ne laissez pas les langues de golf de code vous décourager de publier des réponses avec des langues autres que le golf de code. Essayez de trouver une réponse aussi courte que possible pour «n'importe quel» langage de programmation. - Des règles standard s'appliquent à votre réponse avec des règles d'E / S par défaut , vous êtes donc autorisé à utiliser STDIN / STDOUT, des fonctions / méthodes avec les paramètres appropriés et des programmes complets de type retour. Ton appel.
- Les failles par défaut sont interdites.
- Si possible, veuillez ajouter un lien avec un test pour votre code (par exemple TIO ).
- De plus, l'ajout d'une explication à votre réponse est fortement recommandé.
2
. Pour cela, voir Corollaire 1.4 à la fin de l'article suivant, avec n
égal à 19, 199, 1999, ...
: m-hikari.com/ijcms-password/ijcms-password13-16-2006/…