?::`}:("(!@
perfect:
{:{:;%"}
+puts; "
}zero: "
}else{(:
"negI" _~
""""""{{{"!@
Les caractères latins ne perfect puts zero else neg I
sont en fait que des commentaires *.
c'est-à-dire que si l'entrée est parfaite, un 0
est imprimé, sinon -1
.
Essayez-le en ligne!
* donc ceci ou ce travail aussi ...
?::`}:("(!@ ?::`}:("(!@
: BEWARE :
{:{:;%"} {:{:;%"}
+ ; " +LAIR; "
} : " } OF : "
} {(: }MINO{(:
" " _~ "TAUR" _~
""""""{{{"!@ """"""{{{"!@
Comment?
Prend en entrée un entier positif n
et place une variable d'accumulateur de -n
sur la pile auxiliaire, puis effectue un test de divisibilité pour chaque entier de n-1
bas en haut, y compris, 1
en ajoutant tout ce qui se divise n
dans l'accumulateur. Une fois cette opération terminée, si la variable accumulateur est non nulle, a -1
est émis, sinon a0
est.
Le ?::`}:(
n'est exécuté qu'une seule fois, au début de l'exécution:
?::`}:( Main,Aux
? - take an integer from STDIN and place it onto Main [[n],[]]
: - duplicate top of Main [[n,n],[]]
: - duplicate top of Main [[n,n,n],[]]
` - negate top of Main [[n,n,-n],[]]
} - place top of Main onto Aux [[n,n],[-n]]
: - duplicate top of Main [[n,n,n],[-n]]
( - decrement top of Main [[n,n,n-1],[-n]]
La prochaine instruction, "
est un no-op, mais nous avons trois instructions voisines, donc nous nous branchons en fonction de la valeur en haut de Main, zéro nous fait avancer, tandis que non zéro nous mène à droite.
Si l'entrée était, 1
nous allons de l'avant parce que le haut de Main est zéro:
(!@ Main,Aux
( - decrement top of Main [[1,1,-1],[-1]]
! - print top of Main, a -1
@ - exit the labyrinth
Mais si l'entrée était supérieure à 1
ce que nous tournons à droite parce que le haut de Main est différent de zéro:
:} Main,Aux
: - duplicate top of Main [[n,n,n-1,n-1],[-n]]
} - place top of Main onto Aux [[n,n,n-1],[-n,n-1]]
À ce stade, nous avons une branche à trois voisins, mais nous savons qu'elle n-1
est non nulle, nous tournons donc à droite ...
"% Main,Aux
" - no-op [[n,n,n-1],[-n,n-1]]
% - place modulo result onto Main [[n,n%(n-1)],[-n,n-1]]
- ...i.e we've got our first divisibility indicator n%(n-1), an
- accumulator, a=-n, and our potential divisor p=n-1:
- [[n,n%(n-1)],[a,p]]
Nous sommes maintenant à une autre succursale à trois voisins à %
.
Si le résultat de %
était non nul, nous allons à gauche pour décrémenter notre diviseur potentiel p=p-1
, et quittons l'accumulateur a
, tel qu'il est:
;:{(:""}" Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
- three-neighbour branch but n-1 is non-zero so we turn left
( - decrement top of Main [[n,n,p-1],[a]]
: - duplicate top of Main [[n,n,p-1,p-1],[a]]
"" - no-ops [[n,n,p-1,p-1],[a]]
} - place top of Main onto Aux [[n,n,p-1],[a,p-1]]
" - no-op [[n,n,p-1],[a,p-1]]
% - place modulo result onto Main [[n,n%(p-1)],[a,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... mais si le résultat de %
était égal à zéro (pour la première passe que lorsque n=2
) nous allons tout droit sur Both Ajouter le diviseur à notre accumulateur, a=a+p
ET décrémenter notre potentiel diviseur, p=p-1
:
;:{:{+}}""""""""{(:""} Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
: - duplicate top of Main [[n,n,p,p],[a]]
{ - place top of Aux onto Main [[n,n,p,p,a],[]]
+ - perform addition [[n,n,p,a+p],[]]
} - place top of Main onto Aux [[n,n,p],[a+p]]
} - place top of Main onto Aux [[n,n],[a+p,p]]
""""""" - no-ops [[n,n],[a+p,p]]
- a branch, but n is non-zero so we turn left
" - no-op [[n,n],[a+p,p]]
{ - place top of Aux onto Main [[n,n,p],[a+p]]
- we branch, but p is non-zero so we turn right
( - decrement top of Main [[n,n,p-1],[a+p]]
: - duplicate top of Main [[n,n,p-1,p-1],[a+p]]
"" - no-ops [[n,n,p-1,p-1],[a+p]]
} - place top of Main onto Aux [[n,n,p-1],[a+p,p-1]]
À ce stade, si p-1
est toujours non nul, nous tournons à gauche:
"% Main,Aux
" - no-op [[n,n,p-1],[a+p,p-1]]
% - modulo [[n,n%(p-1)],[a+p,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... mais si p-1
frappé à zéro, nous allons directement à la :
deuxième ligne du labyrinthe (vous avez déjà vu toutes les instructions, donc je laisse leurs descriptions et je donne juste leur effet):
:":}"":({):""}"%;:{:{+}}"""""""{{{ Main,Aux
: - [[n,n,0,0],[a,0]]
" - [[n,n,0,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
: - [[n,n,0,0,0],[a,0]]
} - [[n,n,0,0],[a,0,0]]
- top of Main is zero so we go straight
"" - [[n,n,0,0],[a,0,0]]
: - [[n,n,0,0,0],[a,0,0]]
( - [[n,n,0,0,-1],[a,0,0]]
{ - [[n,n,0,0,-1,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
( - [[n,n,0,0,-1,-1],[a,0]]
: - [[n,n,0,0,-1,-1,-1],[a,0]]
"" - [[n,n,0,0,-1,-1,-1],[a,0]]
} - [[n,n,0,0,-1,-1],[a,0,-1]]
- top of Main is non-zero so we turn left
" - [[n,n,0,0,-1,-1],[a,0,-1]]
% - (-1)%(-1)=0 [[n,n,0,0,0],[a,0,-1]]
; - [[n,n,0,0],[a,0,-1]]
: - [[n,n,0,0,0],[a,0,-1]]
{ - [[n,n,0,0,0,-1],[a,0]]
: - [[n,n,0,0,0,-1,-1],[a,0]]
{ - [[n,n,0,0,0,-1,-1,0],[a]]
+ - [[n,n,0,0,0,-1,-1],[a]]
} - [[n,n,0,0,0,-1],[a,-1]]
} - [[n,n,0,0,0],[a,-1,-1]]
""""""" - [[n,n,0,0,0],[a,-1,-1]]
- top of Main is zero so we go straight
{ - [[n,n,0,0,0,-1],[a,-1]]
{ - [[n,n,0,0,0,-1,-1],[a]]
{ - [[n,n,0,0,0,-1,-1,a],[]]
Maintenant, cela {
a trois instructions voisines, donc ...
... si a
est zéro, ce qui sera parfait n
, alors nous allons tout droit:
"!@ Main,Aux
" - [[n,n,0,0,0,-1,-1,a],[]]
- top of Main is a, which is zero, so we go straight
! - print top of Main, which is a, which is a 0
@ - exit the labyrinth
... si a
est non nul, ce qu'il sera pour non parfait n
, alors nous tournons à gauche:
_~"!@ Main,Aux
_ - place a zero onto Main [[n,n,0,0,0,-1,-1,a,0],[]]
~ - bitwise NOT top of Main (=-1-x) [[n,n,0,0,0,-1,-1,a,-1],[]]
" - [[n,n,0,0,0,-1,-1,a,-1],[]]
- top of Main is NEGATIVE so we turn left
! - print top of Main, which is -1
@ - exit the labyrinth