(-a) × (-a) = a × a


121

Nous savons tous que (si tout va bien), mais pouvez-vous le prouver?(a)×(a)=a×a

Votre tâche consiste à prouver ce fait en utilisant les axiomes en anneau. Quels sont les axiomes de l'anneau? Les axiomes en anneau sont une liste de règles que doivent suivre deux opérations binaires sur un ensemble. Les deux opérations sont addition, et multiplication, . Pour ce défi, voici les axiomes en anneau oʻu et sont des opérations binaires fermées sur un ensemble , est une opération unaire fermée sur , et , , sont membres de :+×+×SSabcS

  1. a+(b+c)=(a+b)+c

  2. a+0=a

  3. a+(a)=0

  4. a+b=b+a *

  5. a×(b×c)=(a×b)×c

  6. a×1=a

  7. 1×a=a

  8. a×(b+c)=(a×b)+(a×c)

  9. (b+c)×a=(b×a)+(c×a)

Votre preuve doit être une chaîne d’égalités, chacune représentant l’application d’un axiome.

Vous pouvez appliquer les axiomes à l'expression entière ou à une sous-expression. Par exemple, si nous avons (a+c)+(b+c) nous pouvons appliquer l'axiome 4 uniquement au terme (b+c) terme (a+c) ou à l'expression entière dans son ensemble. Les variables peuvent également remplacer des expressions arbitrairement complexes. Par exemple, nous pouvons appliquer les axiomes 4 à ((a×c)+b)+((a)+1) pour obtenir((a)+1)+((a×c)+b) . A chaque étape de la preuve, vous ne pouvez appliquer qu'unseulaxiome àuneexpression. Tous les axiomes sont bidirectionnels, ce qui signifie que la substitution peut aller dans les deux sens. Des choses comme celles-ci ne sont pas autorisées

(a + b) + (c + d) = (a + (b + c)) + d Ax. 1

Cela devrait être fait en deux étapes:

(a + b) + (c + d) = ((a + b) + c) + d Ax. 1
                  = (a + (b + c)) + d Ax. 1

Les faits que vous pouvez normalement prendre pour acquis mais qui ne figurent pas dans la liste des axiomes ne peuvent pas être supposés , par exemple (a)=(1)×a est vrai mais requiert plusieurs étapes pour être préformé.

L'utilisateur Anthony a aimablement fourni un validateur de preuve en ligne qui peut remplacer TIO.

Exemple de preuve

Voici un exemple de preuve que (a)=a avec les axiomes utilisés étiquetés à droite de chaque étape.

 -(-a) = (-(-a)) + 0          Ax. 2
       = 0 + (-(-a))          Ax. 4
       = (a + (-a)) + (-(-a)) Ax. 3
       = a + ((-a) + (-(-a))) Ax. 1
       = a + 0                Ax. 3
       = a                    Ax. 2

Essayez-le en ligne!

Vous serez chargé de prouver (a)×(a)=a×a utilisant des substitutions successives comme celle montrée ci-dessus.

Notation

Il s'agit d'une . Vos réponses seront donc notées en fonction du nombre d'étapes prises pour passer de (a)×(a) à a×a , la note la plus basse étant meilleure.

Lemmas

Certaines réponses ont choisi d'utiliser les lemmes dans leurs preuves, je vais donc décrire comment cela devrait être noté pour éviter toute confusion. Pour les non-initiés, les lemmes sont des preuves de faits que vous utilisez plus tard dans la preuve. En mathématiques réelles, ils peuvent vous aider à organiser vos pensées ou à transmettre clairement des informations au lecteur. Dans ce défi, l’utilisation de lemmes ne devrait pas avoir d’effet direct sur votre score. (Bien que l'organisation des preuves puisse rendre le golf plus facile ou plus difficile)

Si vous choisissez d'utiliser des lemmes, il vous en coûtera autant d'étapes que nécessaire pour le prouver en premier lieu chaque fois que vous l'utiliserez. Par exemple, voici la partition d'une preuve utilisant des lemmes.

Lemma:
a × 0 = 0

Proof (7 steps):
a × 0 = (a × 0) + 0                        Ax. 2 (1)
      = (a × 0) + ((a × b) + (-(a × b)))   Ax. 3 (1)
      = ((a × 0) + (a × b)) + (-(a × b))   Ax. 1 (1)
      = (a × (0 + b)) + (-(a × b))         Ax. 8 (1)
      = (a × (b + 0)) + (-(a × b))         Ax. 4 (1)
      = (a × b) + (-(a × b))               Ax. 2 (1)
      = 0                                  Ax. 3 (1)

Theorem:
(a × 0) + (b × 0) = 0

Proof (15 steps):
(a × 0) + (b × 0) = 0 + (b × 0)  Lemma (7)
                  = (b × 0) + 0  Ax. 4 (1)
                  = b × 0        Ax. 2 (1)
                  = 0            Lemma (7)

*: Il a été souligné que cet axiome n'est pas strictement nécessaire pour prouver cette propriété, mais vous pouvez toujours l'utiliser.

1


8
Un programme que nous écrivons est-il censé résoudre ce problème ou simplement imprimer la réponse?
Tahg

8
@Tahg Vous êtes censé le prouver et soumettre votre preuve comme réponse. Ceci est différent de la plupart (sinon de tous) des problèmes que vous verrez ici.
HyperNeutrino

8
Je me suis rapproché de façon frustrante avant de me rendre compte qu'un * 0 = 0 ne figure pas dans la liste des axiomes.
Sparr

8
Euh ... je me trompe peut-être, mais cette façon de faire n'est-elle pas hors sujet? Les réponses ne devraient-elles pas contenir du code?
totalement humain

35
Si cela vous aide, @icrieverytim, considérez la liste des axiomes comme un langage de programmation avec neuf fonctions de substitution de paramètres intégrées. Il s'agit d'un code de golf pour une fonction qui transforme une entrée spécifique en une sortie spécifique.
Sparr

Réponses:


47

18 étapes

(-a)*(-a) = ((-a)*(-a))+0                                             Axiom 2
          = ((-a)*(-a))+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))        Axiom 3
          = (((-a)*(-a))+((a*a)+(a*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = (((a*a)+(a*(-a)))+((-a)*(-a)))+(-((a*a)+(a*(-a))))        Axiom 4
          = ((a*a)+((a*(-a))+((-a)*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = ((a*a)+((a+(-a))*(-a)))+(-((a*a)+(a*(-a))))               Axiom 9
          = ((a*a)+(0*(-a)))+(-((a*a)+(a*(-a))))                      Axiom 3
          = ((a*(a+0))+(0*(-a)))+(-((a*a)+(a*(-a))))                  Axiom 2
          = ((a*(a+(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))           Axiom 3
          = (((a*a)+(a*(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))       Axiom 8
          = ((a*a)+((a*(a+(-a)))+(0*(-a))))+(-((a*a)+(a*(-a))))       Axiom 1
          = (a*a)+(((a*(a+(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))       Axiom 1
          = (a*a)+((((a*a)+(a*(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))   Axiom 8
          = (a*a)+(((a*a)+((a*(-a))+(0*(-a))))+(-((a*a)+(a*(-a)))))   Axiom 1
          = (a*a)+(((a*a)+((a+0)*(-a)))+(-((a*a)+(a*(-a)))))          Axiom 9
          = (a*a)+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))              Axiom 2
          = (a*a)+0                                                   Axiom 3
          = a*a                                                       Axiom 2

J'ai écrit un programme pour vérifier ma solution. Donc, si vous trouvez une erreur, alors mon programme est également faux.


@Etoplay Juste par curiosité, avez-vous écrit votre programme en Prolog?
Jalil Compaoré

23
Ce serait formidable si vous pouviez inclure votre programme. Cela pourrait certainement aider à vérifier d'autres solutions.
Sriotchilism O'Zaic

2
Comment êtes-vous passé de la première ligne à la seconde en appliquant un axiome une fois?
SztupY

4
@SztupY Axiom 3 est v + (-v) = 0laissé v = ((a*a)+(a*(-a))et vous y arrivez en 1 étape.
MT0


29

18 étapes

Différent de la solution en 18 étapes déjà publiée.

a*a = a*a + 0                                                 A2
    = a*a + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))        A3
    = (a*a + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))        A1
    = (a*a + a*((-a) + (-a))) + (-(a*(-a) + a*(-a)))          A8
    = a*(a + ((-a) + (-a))) + (-(a*(-a) + a*(-a)))            A8
    = a*((a + (-a)) + (-a)) + (-(a*(-a) + a*(-a)))            A1
    = a*(0 + (-a)) + (-(a*(-a) + a*(-a)))                     A3
    = a*((-a) + 0) + (-(a*(-a) + a*(-a)))                     A4
    = a*(-a) + (-(a*(-a) + a*(-a)))                           A2
    = (a + 0)*(-a) + (-(a*(-a) + a*(-a)))                     A2
    = (a + (a + (-a)))*(-a) + (-(a*(-a) + a*(-a)))            A3
    = ((a + a) + (-a))*(-a) + (-(a*(-a) + a*(-a)))            A1
    = ((-a) + (a + a))*(-a) + (-(a*(-a) + a*(-a)))            A4
    = ((-a)*(-a) + (a + a)*(-a)) + (-(a*(-a) + a*(-a)))       A9
    = ((-a)*(-a) + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))  A9
    = (-a)*(-a) + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))  A1
    = (-a)*(-a) + 0                                           A3
    = (-a)*(-a)                                               A2

Intéressant de voir quelqu'un le faire à l'envers. Toutes les étapes sont réversibles, c’est une bonne preuve.
Sriotchilism O'Zaic

Le fait qu’il soit renversé est surtout accidentel. La preuve est en fait assez symétrique: j'utilise deux séquences d'étapes similaires pour aller de l'une ou l'autre extrémité au moyen terme a*(-a) + stuff.
Emil Jeřábek le


28

29 26 étapes

Pas de lemmes!

Commentez si vous voyez quelque chose de mal. (Il est très facile de se tromper)

(-a) × (-a) = ((-a) + 0) × (-a)                                                  Ax. 2
            = ((-a) + (a + (-a))) × (-a)                                         Ax. 3
            = ((a + (-a)) + (-a)) × (-a)                                         Ax. 4
            = (a + ((-a) + (-a))) × (-a)                                         Ax. 1
            = (a × (-a)) + (((-a) + (-a)) × (-a))                                Ax. 9
            = (a × ((-a) + 0)) + (((-a) + (-a)) × (-a))                          Ax. 2
            = (a × ((-a) + (a + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 3
            = (a × ((a + (-a)) + (-a))) + (((-a) + (-a)) × (-a))                 Ax. 4
            = (a × (a + ((-a) + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 1
            = ((a × a) + (a × ((-a) + (-a)))) + (((-a) + (-a)) × (-a))           Ax. 8
            = (a × a) + ((a × ((-a) + (-a))) + (((-a) + (-a)) × (-a)))           Ax. 1
            = (a × a) + (((a × (-a)) + (a × (-a))) + (((-a) + (-a)) × (-a)))     Ax. 8
            = (a × a) + (((a + a) × (-a)) + (((-a) + (-a)) × (-a)))              Ax. 9
            = (a × a) + (((a + a) + ((-a) + (-a))) × (-a))                       Ax. 9
            = (a × a) + ((((a + a) + (-a)) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + (a + (-a))) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + 0) + (-a)) × (-a))                                Ax. 3
            = (a × a) + ((a + (-a)) × (-a))                                      Ax. 2
            = (a × a) + (0 × (-a))                                               Ax. 3
            = (a × a) + ((0 × (-a)) + 0)                                         Ax. 2
            = (a × a) + ((0 × (-a)) + ((0 × (-a)) + (-(0 × (-a)))))              Ax. 3
            = (a × a) + (((0 × (-a)) + (0 × (-a))) + (-(0 × (-a))))              Ax. 1
            = (a × a) + (((0 + 0) × (-a)) + (-(0 × (-a))))                       Ax. 9
            = (a × a) + ((0 × (-a)) + (-(0 × (-a))))                             Ax. 2
            = (a × a) + 0                                                        Ax. 3
            = (a × a)                                                            Ax. 2

Le crédit va à Maltysen pour 0 × (-a) = 0



14

18 étapes

Pas la première preuve en 18 étapes, mais c'est plus simple que les autres.

(-a)*(-a)
= (-a)*(-a) + 0                             [Axiom 2]
= (-a)*(-a) + ((-a)*a + -((-a)*a))          [Axiom 3]
= ((-a)*(-a) + (-a)*a) + -((-a)*a)          [Axiom 1]
= ((-a)*(-a) + ((-a) + 0)*a) + -((-a)*a)    [Axiom 2]
= ((-a)*(-a) + ((-a)*a + 0*a)) + -((-a)*a)  [Axiom 9]
= (((-a)*(-a) + (-a)*a) + 0*a) + -((-a)*a)  [Axiom 1]
= ((-a)*((-a) + a) + 0*a) + -((-a)*a)       [Axiom 8]
= ((-a)*(a + (-a)) + 0*a) + -((-a)*a)       [Axiom 4]
= ((-a)*0 + 0*a) + -((-a)*a)                [Axiom 3]
= (0*a + (-a)*0) + -((-a)*a)                [Axiom 4]
= ((a + (-a))*a + (-a)*0) + -((-a)*a)       [Axiom 3]
= ((a*a + (-a)*a) + (-a)*0) + -((-a)*a)     [Axiom 9]
= (a*a + ((-a)*a + (-a)*0)) + -((-a)*a)     [Axiom 1]
= (a*a + (-a)*(a + 0)) + -((-a)*a)          [Axiom 8]
= (a*a + (-a)*a) + -((-a)*a)                [Axiom 2]
= a*a + ((-a)*a + -((-a)*a))                [Axiom 1]
= a*a + 0                                   [Axiom 3]
= a*a                                       [Axiom 2]

Valider


9
A2: (-a) x (-a) = ((-a) + 0) x (-a)
A3:             = ((-a) + (a + (-a))) x (-a)
A9:             = ((-a) x (-a)) + ((a + (-a)) x (-a))
A4:             = ((-a) x (-a)) + (((-a) + a) x (-a))
A9:             = ((-a) x (-a)) + (((-a) x (-a)) + (a x (-a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x (-a))
A2:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + 0))
A3:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + (a x (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x a) + (a x (-a))))
A4:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x (-a)) + (a x a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + ((a x ((-a) + (-a))) + (a x a))
A1:             = (((-a) x ((-a) + (-a))) + (a x ((-a) + (-a)))) + (a x a)
A9:             = (((-a) + a) x ((-a) + (-a))) + (a x a)
A4:             = ((a + (-a)) x ((-a) + (-a))) + (a x a)
Lemma:          = (0 x ((-a) + (-a))) + (a x a)
A3:             = 0 + (a x a)
A4:             = (a x a) + 0
A2:             = (a x a)

Lemma: 0 = 0 x a

A3: 0 = (0 x a) + (-(0 x a))
A2:   = ((0 + 0) x a) + (-(0 x a))
A9:   = ((0 x a) + (0 x a)) + (-(0 x a))
A1:   = (0 x a) + ((0 x a) + (-(0 x a)))
A3:   = (0 x a) + 0
A2:   = (0 x a)

27 26 étapes Merci à Funky Computer Man pour avoir remarqué une ligne en double.


1
Bienvenue sur le site! Je ne sais pas pourquoi vous créez un lemme pour l'utiliser seulement une fois, mais je suppose que ce n'est pas contre les règles.
Sriotchilism O'Zaic le

@FunkyComputerMan Merci! Vous avez raison; Je ne suis pas sûr de ce que je pensais quand j'ai écrit ce lemme ^^. Et merci pour votre modification et votre remarque.
Jalil Compaoré

1
@ JalilCompaoré Je pense que vous pourriez être en mesure de sauver ce dernier A3en commençant par appliquer A2à la seconde (-a) plutôt que la première. Je ne suis pas sûr cependant, car je n'ai pas le temps de le lire pour le moment.
H.PWiz

7

6 + 7 + 7 + 6 + 3 = 29 étapes

J'espère vraiment que je n'ai rien foiré, laissez un commentaire si vous pensez que je l'ai fait.

Lemma 1. a*0=0 (6 steps)

0 = a*0 + -(a*0)  axiom 3
= a*(0+0) + -(a*0) axiom 2
= (a*0 + a*0) + -(a*0) axiom 8
= a*0 + (a*0 + -(a*0)) axiom 1
= a*0 + 0 axiom 3
= a*0 axiom 2

Lemma 2. a*(-b) = -(a*b) (7 steps)

a*(-b) = a*(-b) + 0 axiom 2
= a*(-b) + (a*b + -(a*b)) axiom 3
= (a*(-b) + a*b) + -(a*b) axiom 1
= a*(-b+b) + -(a*b) axiom 8
= a*0 + -(a*b) axiom 3
= 0 + -(a*b) lemma 1
= -(a*b) axiom 2

Lemma 3. (-a)*b = -(a*b) (7 steps)
    same as above

Lemma 4. -(-(a)) = a (6 steps)

 -(-a) = (-(-a)) + 0    axiom 2
 = 0 + (-(-a))          axiom 4
 = (a + (-a)) + (-(-a)) axiom 3
 = a + ((-a) + (-(-a))) axiom 1
 = a + 0                axiom 3
 = a                    axiom 2

Theorem. -a*-a=0 (3 steps)

-a*-a = -(a*(-a)) lemma 3
= -(-(a*a)) lemma 2
= a*a lemma 4

Q.E.D.

3
Je ne pense pas que vous puissiez faire des lemmes
HyperNeutrino

11
"Théorème. -A * -a = 0" devrait être = a * a?
Sparr

2
@ H.PWiz Je n'ai pas de problème avec les personnes utilisant des lemmes, mais elles coûtent autant d'étapes qu'elles sont longues à chaque utilisation. Je recommanderais de ne pas les utiliser car ils peuvent entraver les optimisations, mais pour ce qui me concerne, ce message est correct.
Sriotchilism O'Zaic

4
passer de "0 + - (a * b)" à "- (a * b)" en une seule application de l'axiome 2 n'est pas correct. vous devez utiliser axiome 4 pour permuter les côtés du + en premier.
Sparr

2
Je lis le lemme 2/3 en 6 étapes plus une instance du lemme 1 pour 12 étapes, le lemme 4 en 6 étapes pour un total de 30 étapes. Est-ce que j'ai râté quelque chose?
Tahg

6

23 étapes

(-a) * (-a) = ((-a) * (-a)) + 0                                 ✔ axiom 2
            = ((-a) * (-a)) + (((-a) * a) + -((-a) * a))        ✔ axiom 3
            = (((-a) * (-a)) + (-a) * a) + -((-a) * a)          ✔ axiom 1
            = (-a) * (-a + a) + -((-a) * a)                     ✔ axiom 8
            = (-a) * (a + (-a)) + -((-a) * a)                   ✔ axiom 4
            = ((-a) * 0) + -((-a) * a)                          ✔ axiom 3
            = (((-a) * 0) + 0) + -((-a) * a)                    ✔ axiom 2
            = ((-a) * 0 + ((-a)*0 + -((-a)*0))) + -((-a) * a)   ✔ axiom 3
            = (((-a) * 0 + (-a)*0) + -((-a)*0)) + -((-a) * a)   ✔ axiom 1
            = ((-a) * (0 + 0) + -((-a)*0)) + -((-a) * a)        ✔ axiom 8
            = ((-a) * 0 + -((-a)*0)) + -((-a) * a)              ✔ axiom 2
            = 0 + -((-a) * a)                                   ✔ axiom 3
            = (0* a) + -(0*a) + -((-a) * a)                     ✔ axiom 3
            = ((0+0)* a) + -(0*a) + -((-a) * a)                 ✔ axiom 2
            = ((0 * a ) + (0*a) + -(0*a)) + -((-a) * a)         ✔ axiom 9
            = ((0 * a ) + ((0*a) + -(0*a))) + -((-a) * a)       ✔ axiom 1
            = ((0 * a ) + 0) + -((-a) * a)                      ✔ axiom 3
            = (0 * a ) + -((-a) * a)                            ✔ axiom 2
            = ((a + -a) * a ) + -((-a) * a)                     ✔ axiom 3
            = ((a * a) + (-a) * a) + -((-a) * a)                ✔ axiom 9
            = (a * a) + (((-a) * a) + -((-a) * a))              ✔ axiom 1
            = (a * a) + 0                                       ✔ axiom 3
            = a * a                                             ✔ axiom 2

Essayez-le en ligne!

Oui, vous avez bien lu, j'ai écrit un correcteur d'épreuve pour ce puzzle (naturellement, il est possible que le correcteur lui-même soit erroné)


5

34 étapes

Lemma 1: 0=0*a (8 steps)
    0
A3: a*0 + -(a*0)
A4: -(a*0) + a*0
A2: -(a*0) + a*(0+0)
A8: -(a*0) + (a*0 + a*0)
A1: (-(a*0) + a*0) + a*0
A3: 0 + a*0
A4: a*0 + 0
A2: a*0

Theorem: -a*-a = a*a (49 steps)

    -a * -a
A2: (-a+0) * -a
A2: (-a+0) * (-a+0)
A3: (-a+(a+-a)) * (-a+0)
A3: (-a+(a+-a)) * (-a+(a+-a))
A8: -a*(-a+(a+-a)) + (a+-a)*(-a+(a+-a))
A8: -a*(-a+(a+-a)) + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+0)      + a*(-a+(a+-a))
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*(a+-a)
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*-a          + a*-a + a*a + a*-a
A8: -a*-a          + (-a+a)*-a             + a*a + a*-a
A3: -a*-a          + 0*-a                  + a*a + a*-a
L1: -a*-a          + 0                     + a*a + a*-a
A2: -a*-a                                  + a*a + a*-a
A4: a*a + -a*-a + a*-a
A8: a*a + (-a+a)*-a
A3: a*a + 0*-a
L1: a*a + 0
A2: a*a

1
Je remarque un manque de parens après un moment. Parce que l'association coûte des étapes, je pense qu'il serait plus facile de vérifier votre preuve si vous incluiez les parenthèses.
Sriotchilism O'Zaic

Je suis encore en train d'améliorer et de mettre à jour. Je vais essayer d'inclure tous les parens quand j'ai fini.
Sparr

5

25 étapes

Remarque: sur la base de la question, je suppose que les règles de logique (y compris l'égalité) sont implicites et ne comptent pas dans le nombre total de pas. C'est-à-dire que des choses comme "si x = y, alors y = x" et "si ((P ET Q) ET R) alors (P ET (Q ET R))" peuvent être utilisées implicitement.

Lemme Z [6 étapes] : 0*a = 0:

0 = (0*a) + (-(0*a))       | Ax. 3
  = ((0+0)*a) + (-(0*a))   | Ax. 2
  = (0*a + 0*a) + (-(0*a)) | Ax. 9
  = 0*a + (0*a + (-(0*a))) | Ax. 1
  = 0*a + (0)              | Ax. 3
  = 0*a                    | Ax. 2

Lemma M [12 étapes] :(-a)*b = -(a*b)

(-a)*b = (-a)*b + 0                | Ax. 2
       = (-a)*b + (a*b + (-(a*b))) | Ax. 3
       = ((-a)*b + a*b) + (-(a*b)) | Ax. 5
       = ((-a)+a)*b + (-(a*b))     | Ax. 9
       = 0*b + (-(a*b))            | Ax. 3
       = 0 + (-(a*b))              | Lem. Z [6]
       = -(a*b)                    | Ax. 2

Théorème [25 étapes] :(-a)*(-a) = a*a

(-a)*(-a) = (-a)*(-a) + 0                | Ax. 2
          = 0 + (-a)*(-a)                | Ax. 4
          = (a*a + (-(a*a))) + (-a)*(-a) | Ax. 3
          = a*a + ((-(a*a)) + (-a)*(-a)) | Ax. 1
          = a*a + ((-a)*a + (-a)*(-a))   | Lem. M [12]
          = a*a + ((-a)*(a + (-a)))      | Ax. 8
          = a*a + ((-a)*0)               | Ax. 3
          = a*a + 0                      | Lem. Z [6]
          = a*a                          | Ax. 2

J'ai l'impression qu'il y a place à l'amélioration ici; Par exemple, j'utilise la propriété commutative d'addition, bien que cela semble inutile, car (-a)*(-a) = a*ac'est le cas dans les structures algébriques où l'addition n'est pas commutative. Par ailleurs, dans ces structures, l’identité additive est commutative, et c’est tout ce dont j’avais besoin pour la preuve. Je ne sais pas. Plus généralement, la structure de la preuve semble plutôt dépourvue de direction; Je me suis contenté de jeter un coup d'oeil sur le problème jusqu'à ce que ça marche, alors je parie qu'il y a une optimisation à faire.

C'était amusant - merci pour la question intéressante et créative OP! Je n'ai jamais vu de tels défis auparavant; j'espère que la devient une chose!


Je vois comment l'approche utilisée dans le lemme Z pourrait produire une preuve équivalente 0=(-a)*0en 6 étapes. Techniquement, il mérite son propre lemme, n'est-ce pas?
SmileAndNod le

4

22 23 étapes

Nouvelle réponse, car mon précédent était imparfait. Permettez-moi d'abord d'ajouter quelques commentaires généraux:

  • Le problème ne permet pas d'ajouter des termes des deux côtés d'une équation; au lieu de cela, nous ne pouvons modifier qu'une chaîne initiale.
  • La multiplication n'est pas supposée être commutative.
  • On nous donne une unité 1 , mais elle ne joue aucun rôle dans le puzzle, car elle est exclusivement impliquée dans les règles qui la définissent.

Passons maintenant à la preuve (je définis n = (-a) pour simplifier la lecture):

(-a)×(-a) :=
n×n =
n×n + 0 =                                [Ax. 2]
n×n + [n×a + -(n×a)] =                   [Ax. 3]
[n×n + n×a] + -(n×a) =                   [Ax. 1]
[n×(n+a)] + -(n×a) =                     [Ax. 8]
[n×(n+a) + 0] + -(n×a) =                 [Ax. 2]
[n×(n+a) + (n×a + -(n×a))] + -(n×a) =    [Ax. 3]
[(n×(n+a) + n×a) + -(n×a)] + -(n×a) =    [Ax. 1]
[n×((n+a) + a) + -(n×a)] + -(n×a) =      [Ax. 8]
[n×((a+n) + a) + -(n×a)] + -(n×a) =      [Ax. 4]
[n×(0 + a) + -(n×a)] + -(n×a) =          [Ax. 3]
[n×(a + 0) + -(n×a)] + -(n×a) =          [Ax. 4]
[n×a + -(n×a)] + -(n×a) =                [Ax. 2]
[(n+0)×a + -(n×a)] + -(n×a) =            [Ax. 2]
[(0+n)×a + -(n×a)] + -(n×a) =            [Ax. 4]
[((a+n)+n)×a + -(n×a)] + -(n×a) =        [Ax. 3]
[((a+n)×a+n×a) + -(n×a)] + -(n×a) =      [Ax. 9]
[(a+n)×a+(n×a + -(n×a))] + -(n×a) =      [Ax. 1]
[(a+n)×a + 0] + -(n×a) =                 [Ax. 3]
[(a+n)×a] + -(n×a) =                     [Ax. 2]
[a×a+n×a] + -(n×a) =                     [Ax. 9]
a×a+[n×a + -(n×a)] =                     [Ax. 1]
a×a+0 =                                  [Ax. 3]
a×a                                      [Ax. 2]

@ H.PWiz pourquoi ne peut pas vous passer de nà 0 + nen une seule étape? N'est-ce pas juste A2? Les règles disent que les variables peuvent également
remplacer

@ jq170727 Axiom 2 ne dit que ça, a + 0 = apas ça 0 + a = a. Vous avez besoin d’une étape commutative supplémentaire pour aller de nà 0 + n.
Sriotchilism O'Zaic

@ H.PWiz ne pouvez-vous pas lire l'axiome à l'envers?
jq170727

1
@ jq170727 Non, vous devez utiliser la commutativité pour cela.
Jalil Compaoré

4

304 étapes

Wiki de communauté, car cette preuve est générée par la fonction FindEquationalProof de Mathematica .

La preuve est assez longue. Mathematica ne sait pas comment jouer au golf.

Ceci est le code Mathematica qui génère la preuve (nécessite Mathematica 11.3), où p, t, des nmoyens +, ×, -respectivement:

ringAxioms = {ForAll[{a, b, c}, p[a, p[b, c]] == p[p[a, b], c]],
   ForAll[a, p[a, 0] == a],
   ForAll[a, p[a, n[a]] == 0],
   ForAll[{a, b}, p[a, b] == p[b, a]],
   ForAll[{a, b, c}, t[a, t[b, c]] == t[t[a, b], c]],
   ForAll[a, t[a, 1] == a], ForAll[a, t[1, a] == a],
   ForAll[{a, b, c}, t[a, p[b, c]] == p[t[a, b], t[a, c]]],
   ForAll[{a, b, c}, t[p[b, c], a] == p[t[b, a], t[c, a]]]};

proof = FindEquationalProof[t[n[a], n[a]] == t[a, a], ringAxioms];

proof["ProofNotebook"]

Il n’est pas facile de compter les pas directement, je le calcule donc par le nombre de chemins allant des axiomes à la conclusion dans le "graphe de preuve".

graph = proof["ProofGraph"];
score = Sum[
  Length[FindPath[graph, axiom, "Conclusion 1", Infinity, 
    All]], {axiom, 
   Select[VertexList[graph], StringMatchQ["Axiom " ~~ __]]}]

Essayez-le en ligne!

C'est la preuve générée par le code:

Axiom 1

We are given that:

x1==p[x1, 0]

Axiom 2

We are given that:

x1==t[x1, 1]

Axiom 3

We are given that:

x1==t[1, x1]

Axiom 4

We are given that:

p[x1, x2]==p[x2, x1]

Axiom 5

We are given that:

p[x1, p[x2, x3]]==p[p[x1, x2], x3]

Axiom 6

We are given that:

p[x1, n[x1]]==0

Axiom 7

We are given that:

p[t[x1, x2], t[x3, x2]]==t[p[x1, x3], x2]

Axiom 8

We are given that:

p[t[x1, x2], t[x1, x3]]==t[x1, p[x2, x3]]

Axiom 9

We are given that:

t[x1, t[x2, x3]]==t[t[x1, x2], x3]

Hypothesis 1

We would like to show that:

t[n[a], n[a]]==t[a, a]

Critical Pair Lemma 1

The following expressions are equivalent:

p[0, x1]==x1

Proof

Note that the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Axiom 4 and Axiom 1 respectively.

Critical Pair Lemma 2

The following expressions are equivalent:

p[x1, p[n[x1], x2]]==p[0, x2]

Proof

Note that the input for the rule:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Axiom 5 and Axiom 6 respectively.

Critical Pair Lemma 3

The following expressions are equivalent:

t[p[1, x1], x2]==p[x2, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x3_, x2_]]->t[p[x1, x3], x2]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[1, x1_]->x1

where these rules follow from Axiom 7 and Axiom 3 respectively.

Critical Pair Lemma 4

The following expressions are equivalent:

t[x1, p[1, x2]]==p[x1, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x1_, x3_]]->t[x1, p[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 1]->x1

where these rules follow from Axiom 8 and Axiom 2 respectively.

Critical Pair Lemma 5

The following expressions are equivalent:

t[p[1, x1], 0]==t[x1, 0]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

p[x1_, t[x2_, x1_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 6

The following expressions are equivalent:

t[0, 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Critical Pair Lemma 5 and Axiom 1 respectively.

Substitution Lemma 1

It can be shown that:

t[0, 0]==0

Proof

We start by taking Critical Pair Lemma 6, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 7

The following expressions are equivalent:

t[x1, 0]==t[p[x1, 1], 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 5 and Axiom 4 respectively.

Critical Pair Lemma 8

The following expressions are equivalent:

t[0, p[1, x1]]==t[0, x1]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

p[x1_, t[x1_, x2_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 9

The following expressions are equivalent:

t[p[x1, 1], p[1, 0]]==p[p[x1, 1], t[x1, 0]]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[p[x1_, 1], 0]->t[x1, 0]

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 7 respectively.

Substitution Lemma 2

It can be shown that:

t[p[x1, 1], 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Critical Pair Lemma 9, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 3

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Substitution Lemma 2, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Substitution Lemma 4

It can be shown that:

p[x1, 1]==p[x1, p[1, t[x1, 0]]]

Proof

We start by taking Substitution Lemma 3, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Critical Pair Lemma 10

The following expressions are equivalent:

t[0, x1]==t[0, p[x1, 1]]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 8 and Axiom 4 respectively.

Critical Pair Lemma 11

The following expressions are equivalent:

t[p[1, 0], p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

t[x2_, x1_]

which can be unified with the input for the rule:

t[0, p[x1_, 1]]->t[0, x1]

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 10 respectively.

Substitution Lemma 5

It can be shown that:

t[1, p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Critical Pair Lemma 11, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 6

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Substitution Lemma 5, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Substitution Lemma 7

It can be shown that:

p[x1, 1]==p[x1, p[1, t[0, x1]]]

Proof

We start by taking Substitution Lemma 6, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Substitution Lemma 8

It can be shown that:

p[x1, p[n[x1], x2]]==x2

Proof

We start by taking Critical Pair Lemma 2, and apply the substitution:

p[0, x1_]->x1

which follows from Critical Pair Lemma 1.

Critical Pair Lemma 12

The following expressions are equivalent:

n[n[x1]]==p[x1, 0]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

p[n[x1_], x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Substitution Lemma 8 and Axiom 6 respectively.

Substitution Lemma 9

It can be shown that:

n[n[x1]]==x1

Proof

We start by taking Critical Pair Lemma 12, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 13

The following expressions are equivalent:

x1==p[n[x2], p[x2, x1]]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

n[x1_]

which can be unified with the input for the rule:

n[n[x1_]]->x1

where these rules follow from Substitution Lemma 8 and Substitution Lemma 9 respectively.

Critical Pair Lemma 14

The following expressions are equivalent:

t[x1, x2]==p[n[x2], t[p[1, x1], x2]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 15

The following expressions are equivalent:

t[x1, x2]==p[n[x1], t[x1, p[1, x2]]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 4 respectively.

Critical Pair Lemma 16

The following expressions are equivalent:

p[1, t[x1, 0]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[x1_, 0]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 4 respectively.

Substitution Lemma 10

It can be shown that:

p[1, t[x1, 0]]==1

Proof

We start by taking Critical Pair Lemma 16, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 17

The following expressions are equivalent:

t[t[x1, 0], 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[x1_, 0]]->1

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 10 respectively.

Substitution Lemma 11

It can be shown that:

t[x1, t[0, 0]]==t[1, 0]

Proof

We start by taking Critical Pair Lemma 17, and apply the substitution:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

which follows from Axiom 9.

Substitution Lemma 12

It can be shown that:

t[x1, 0]==t[1, 0]

Proof

We start by taking Substitution Lemma 11, and apply the substitution:

t[0, 0]->0

which follows from Substitution Lemma 1.

Substitution Lemma 13

It can be shown that:

t[x1, 0]==0

Proof

We start by taking Substitution Lemma 12, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 18

The following expressions are equivalent:

t[x1, t[0, x2]]==t[0, x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 0]->0

where these rules follow from Axiom 9 and Substitution Lemma 13 respectively.

Critical Pair Lemma 19

The following expressions are equivalent:

p[1, t[0, x1]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[0, x1_]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 7 respectively.

Substitution Lemma 14

It can be shown that:

p[1, t[0, x1]]==1

Proof

We start by taking Critical Pair Lemma 19, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 20

The following expressions are equivalent:

t[0, t[0, x1]]==t[0, 1]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[0, x1_]]->1

where these rules follow from Critical Pair Lemma 8 and Substitution Lemma 14 respectively.

Substitution Lemma 15

It can be shown that:

t[0, x1]==t[0, 1]

Proof

We start by taking Critical Pair Lemma 20, and apply the substitution:

t[x1_, t[0, x2_]]->t[0, x2]

which follows from Critical Pair Lemma 18.

Substitution Lemma 16

It can be shown that:

t[0, x1]==0

Proof

We start by taking Substitution Lemma 15, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Critical Pair Lemma 21

The following expressions are equivalent:

t[n[1], x1]==p[n[x1], t[0, x1]]

Proof

Note that the input for the rule:

p[n[x1_], t[p[1, x2_], x1_]]->t[x2, x1]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 14 and Axiom 6 respectively.

Substitution Lemma 17

It can be shown that:

t[n[1], x1]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 21, and apply the substitution:

t[0, x1_]->0

which follows from Substitution Lemma 16.

Substitution Lemma 18

It can be shown that:

t[n[1], x1]==n[x1]

Proof

We start by taking Substitution Lemma 17, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 22

The following expressions are equivalent:

t[n[1], t[x1, x2]]==t[n[x1], x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[n[1], x1_]->n[x1]

where these rules follow from Axiom 9 and Substitution Lemma 18 respectively.

Substitution Lemma 19

It can be shown that:

n[t[x1, x2]]==t[n[x1], x2]

Proof

We start by taking Critical Pair Lemma 22, and apply the substitution:

t[n[1], x1_]->n[x1]

which follows from Substitution Lemma 18.

Critical Pair Lemma 23

The following expressions are equivalent:

t[x1, n[1]]==p[n[x1], t[x1, 0]]

Proof

Note that the input for the rule:

p[n[x1_], t[x1_, p[1, x2_]]]->t[x1, x2]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 15 and Axiom 6 respectively.

Substitution Lemma 20

It can be shown that:

t[x1, n[1]]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 23, and apply the substitution:

t[x1_, 0]->0

which follows from Substitution Lemma 13.

Substitution Lemma 21

It can be shown that:

t[x1, n[1]]==n[x1]

Proof

We start by taking Substitution Lemma 20, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 24

The following expressions are equivalent:

n[t[x1, x2]]==t[x1, t[x2, n[1]]]

Proof

Note that the input for the rule:

t[x1_, n[1]]->n[x1]

contains a subpattern of the form:

t[x1_, n[1]]

which can be unified with the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

where these rules follow from Substitution Lemma 21 and Axiom 9 respectively.

Substitution Lemma 22

It can be shown that:

t[n[x1], x2]==t[x1, t[x2, n[1]]]

Proof

We start by taking Critical Pair Lemma 24, and apply the substitution:

n[t[x1_, x2_]]->t[n[x1], x2]

which follows from Substitution Lemma 19.

Substitution Lemma 23

It can be shown that:

t[n[x1], x2]==t[x1, n[x2]]

Proof

We start by taking Substitution Lemma 22, and apply the substitution:

t[x1_, n[1]]->n[x1]

which follows from Substitution Lemma 21.

Substitution Lemma 24

It can be shown that:

t[a, n[n[a]]]==t[a, a]

Proof

We start by taking Hypothesis 1, and apply the substitution:

t[n[x1_], x2_]->t[x1, n[x2]]

which follows from Substitution Lemma 23.

Conclusion 1

We obtain the conclusion:

True

Proof

Take Substitution Lemma 24, and apply the substitution:

n[n[x1_]]->x1

which follows from Substitution Lemma 9.
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.