Récemment, j'ai joué à un jeu appelé Alcazar. Il s’agit d’un jeu de société où l’objectif est d’entrer par une porte, de passer par toutes les places et de sortir par une autre porte. Les seules règles sont:
- Entrez une fois, laissez une fois;
- Traverser toutes les places;
- Ne pas traverser une case plus d'une fois
L'image ci-dessous montre un exemple de carte Alcazar et, à sa droite, le puzzle résolu (bien sûr, c'est une tâche facile):
Vous pouvez trouver plus de puzzles sur http://www.theincrediblecompany.com/try-alcazar et télécharger le jeu sur PlayStore (PS: ce n'est pas une publicité).
Mon problème est que j'ai presque fini le jeu, sauf pour un niveau. Je ne peux tout simplement pas trouver un moyen de le résoudre. Le défi que je propose est donc de: créer un algorithme qui résout n’importe quel niveau d’alcazar résolu 1 normal 2 .
Bien sûr, je ne demande à personne de créer un interpréteur d'image pour lire l'image et résoudre le puzzle (ou suis-je?). J'ai donc redessiné le puzzle ci-dessus en utilisant des caractères de dessin de boîtes. Le puzzle et sa solution ressembleraient à ceci:
╔═══════╗ ╔═══════╗
║▒ ▒ ▒ ▒║ ║┌─┐ ┌─┐║
║ ║ ║ ║│ │ │║│║
╣▒ ▒ ▒║▒╠ ╣│ └─┘║└╠
║ ══╦═╩═╣ ║│══╦═╩═╣
║▒ ▒║▒ ▒║ ║└─┐║┌─┐║
║ ║ ║ ==> ║ │║│ │║
╣▒ ▒║▒ ▒║ ╣┐ │║│ │║
║ ║ ║ ║ ║│║│║│ │║
╣▒║▒ ▒ ▒║ ╣│║└─┘ │║
║ ║ ║ ║│║ │║
║▒ ▒ ▒ ▒║ ║└─────┘║
╚═══════╝ ╚═══════╝
Dans le tableau ci-dessus, ▒
sont les cellules à remplir.
On peut observer qu'il y a un gab vertical et horizontal entre les cellules. C'est parce que j'ai dû insérer un espace entre les cellules pour ajouter les murs. Cela signifie que les seules cellules importantes sont celles situées en haut, en bas, à gauche et à droite de chaque cellule. Les diagonales pourraient être supprimées sans perte d'information. Par exemple, dans le tableau ci-dessous, les deux représentent le même casse-tête:
╔════╩╗ ═ ═ ╩
║▒ ▒ ▒║ ║▒ ▒ ▒║
║ ═══ ║ ═
║▒ ▒ ▒║ == ║▒ ▒ ▒║
║ ║
║▒ ▒ ▒║ ║▒ ▒ ▒║
╚╦════╝ ╦═ ══
Ceci est également valable pour les solutions. C'est-à-dire qu'il n'est pas nécessaire de connecter les cellules:
╔════╩╗ ╔════╩╗ ╔════╩╗
║▒ ▒ ▒║ ║┌───┘║ ║┌ ─ ┘║
║ ═══ ║ ║│═══ ║ ║ ═══ ║
║▒ ▒ ▒║ == ║└───┐║ => ║└ ─ ┐║
║ ║ ║ │║ ║ ║
║▒ ▒ ▒║ ║┌───┘║ ║┌ ─ ┘║
╚╦════╝ ╚╦════╝ ╚╦════╝
Dans l'exemple ci-dessus, les deux solutions ont la même signification.
Oui, les cas de test. Les voici:
Puzzle 1
╔════╩╗ ╔════╩╗
║▒ ▒ ▒║ ║┌ ─ ┘║
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒║ => ║└ ─ ┐║
║ ║ ║ ║
║▒ ▒ ▒║ ║┌ ─ ┘║
╚╦════╝ ╚╦════╝
Puzzle 2
╔═════╗ ╔═════╗
║▒ ▒ ▒║ ║┌ ─ ┐║
║ ║ ║ ║ ║ ║
╣▒ ▒║▒║ ╣└ ┐║│║
║ ║ ║ ║ => ║ ║ ║ ║
╣▒║▒ ▒╠ ╣┐║│ │╠
║ ║ ║ ║ ║ ║
║▒ ▒ ▒║ ║└ ┘ │║
╚════╦╝ ╚════╦╝
Puzzle 3
╔════╩══╗ ╔════╩══╗
║▒ ▒ ▒ ▒║ ║┌ ┐ └ ┐║
║ ║ ║ ║ ║ ║ ║ ║
╣▒║▒ ▒║▒╠ ╣┘║└ ┐║│╠
║ ╚══ ║ ║ ║ ╚══ ║ ║
║▒ ▒ ▒ ▒╠ => ║┌ ─ ┘ │╠
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒ ▒║ ║│ ┌ ┐ │║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒║ ║└ ┘║└ ┘║
╚═══╩═══╝ ╚═══╩═══╝
puzzle 4
╔═══════╗ ╔═══════╗
║▒ ▒ ▒ ▒║ ║┌ ┐ ┌ ┐║
║ ║ ║ ║ ║ ║
╣▒ ▒ ▒║▒╠ ╣│ └ ┘║└╠
║ ══╦═╩═╣ ║ ══╦═╩═╣
║▒ ▒║▒ ▒║ ║└ ┐║┌ ┐║
║ ║ ║ => ║ ║ ║
╣▒ ▒║▒ ▒║ ╣┐ │║│ │║
║ ║ ║ ║ ║ ║ ║ ║
╣▒║▒ ▒ ▒║ ╣│║└ ┘ │║
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒║ ║└ ─ ─ ┘║
╚═══════╝ ╚═══════╝
Puzzle 5
╔══╩══════╗ ╔══╩══════╗
║▒ ▒ ▒ ▒ ▒║ ║┌ ─ ┐ ┌ ┐║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒ ▒╠ ║└ ┐║└ ┘ │╠
║ ╠════ ║ ║ ╠════ ║
║▒ ▒║▒ ▒ ▒║ => ║┌ ┘║┌ ─ ┘║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒ ▒╠ ║└ ┐║└ ─ ─╠
║ ╠═════╣ ║ ╠═════╣
║▒ ▒║▒ ▒ ▒║ ║┌ ┘║┌ ─ ┐║
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒║ ║└ ─ ┘ ┌ ┘║
╚══╦═══╦══╝ ╚══╦═══╦══╝
Puzzle 6
╔═══════════╗ ╔═══════════╗
║▒ ▒ ▒ ▒ ▒ ▒║ ║┌ ┐ ┌ ┐ ┌ ┐║
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║│ └ ┘ └ ┘ │║
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║└ ┐ ┌ ─ ─ ┘║
║ ═══ ║ ║ ═══ ║
╣▒ ▒ ▒ ▒ ▒ ▒╠ => ╣┐ │ │ ┌ ┐ ┌╠
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║│ │ │ │ │ │║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒║▒ ▒║ ║│ │║│ │║│ │║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║└ ┘ └ ┘ └ ┘║
╚═══════════╝ ╚═══════════╝
Puzzle 7
╔════╩════════╦╩╗ ╔════╩════════╦╩╗
║▒ ▒ ▒ ▒ ▒ ▒ ▒║▒║ ║┌ ─ ─ ─ ─ ─ ┐║│║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒║▒ ▒ ▒ ▒║▒ ▒ ▒║ ║│║┌ ─ ─ ┐║┌ ┘ │║
║ ║ ║ ═══ ║ ║ ║ ║ ║ ═══ ║ ║
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒╠ ║│ │║┌ ─ ┘ └ ┐ │╠
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║│ │ └ ┐ ┌ ┐ └ ┘║
║ ║ ║ ══╣ ║ ║ ║ ══╣
║▒ ▒ ▒║▒║▒ ▒ ▒ ▒║ ║│ └ ┐║│║│ └ ─ ┐║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║│ ┌ ┘ │ └ ┐ ┌ ┘║
║ ║ ══╣ => ║ ║ ══╣
║▒ ▒ ▒ ▒ ▒ ▒║▒ ▒║ ║└ ┘ ┌ ┘ ┌ ┘║└ ┐║
╠══ ║ ╚══ ║ ╠══ ║ ╚══ ║
║▒ ▒ ▒ ▒ ▒║▒ ▒ ▒║ ║┌ ┐ └ ┐ │║┌ ─ ┘║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒║▒║▒ ▒ ▒ ▒║ ║│ └ ┐║│║│ └ ─ ┐║
║ ║ ║ ║ ╔══ ║ ║ ║ ║ ║ ╔══ ║
║▒║▒ ▒ ▒ ▒║▒ ▒ ▒║ ║│║┌ ┘ │ │║┌ ┐ │║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║ ║│ └ ─ ┘║└ ┘ │ │║
║ ╚══ ║ ║ ╚══ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║└ ─ ─ ─ ─ ─ ┘ │║
╚════╦═╦═╦═════╦╝ ╚════╦═╦═╦═════╦╝
Puzzle 8 (Désolé, je n'ai vraiment pas la solution à celui-ci)
╔══╩╦══╩═══╩═╩═╩═══╩╗
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
║ ║ ║
╣▒ ▒║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
║ ╚══ ╔══ ╔═══╣
╣▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║▒ ▒╠
║ ║ ╔══ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒╠
║ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ╔═══╗ ╚══ ║
╣▒ ▒║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒║
║ ║ ║ ║
╣▒ ▒║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒╠
║ ══╝ ║ ╔══ ║
║▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║▒ ▒║
║ ══╗ ╚══ ╔══ ║ ║
╣▒ ▒ ▒║▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║▒ ▒║
║ ═══ ══╗ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
╠══ ║ ║ ╔══ ║
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒║▒ ▒╠
║ ╚══ ║ ║ ║ ║
╣▒ ▒ ▒ ▒║▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
╚══╦═══╦═══╦═╦═╦═╦═╦╝
Contribution
Toute entrée de votre code peut avoir n'importe quelle représentation pourvu qu'elle suive ces règles:
Ce doit être une entrée graphique. Il n'est donc pas possible de lire une liste de coordonnées, par exemple.
Les murs horizontaux, les murs verticaux et les portes doivent être distincts et doivent comporter un caractère visible (aucun caractère vierge).
Le
▒
peut être remplacé par des blancs. Je viens d'utiliser un caractère différent pour les mettre en valeur.
Sortie
La sortie peut aussi avoir n'importe quelle représentation pourvu qu'elle suive ces règles:
Ce doit être une sortie graphique. C'est-à-dire que l'on peut voir le chemin en le regardant.
La règle numéro un implique que les caractères du chemin soient différents. C'est-à-dire qu'il y aura au moins 6 caractères de chemin; horizontal, vertical et coins.
Pour que la réponse soit valide, la sortie doit être la même carte que l'entrée (évidemment) avec toutes les cellules (dans ma représentation, la
▒
) remplies. Le remplissage des espaces entre les cellules est facultatif.
Notation
C'est le code-golf , donc le code le plus court en octets gagne.
1 Certains niveaux d’Alcazar comportent des cellules et des tunnels en option. Ceux-ci ne seront pas considérés.
2 Il y a des cartes de l'Alcazar qui sont impossibles.