Un triple de Pythagore est une solution entière positive à l'équation:
Un triple de Trithagore est une solution entière positive à l'équation:
Où Δn trouve le nième nombre triangulaire . Tous les triplets trithagoriciens sont également des solutions à l'équation:
Tâche
Étant donné un entier positif c, sortez toutes les paires d'entiers positifs de a,btelle sorte que la somme des ae et be nombres triangulaires soit le ce nombre triangulaire. Vous pouvez sortir les paires de la manière la plus pratique. Vous ne devez sortir chaque paire qu'une seule fois.
C'est du code-golf
Cas de test
2: []
3: [(2, 2)]
21: [(17, 12), (20, 6)]
23: [(18, 14), (20, 11), (21, 9)]
78: [(56, 54), (62, 47), (69, 36), (75, 21), (77, 12)]
153: [(111, 105), (122, 92), (132, 77), (141, 59), (143, 54), (147, 42), (152, 17)]
496: [(377, 322), (397, 297), (405, 286), (427, 252), (458, 190), (469, 161), (472, 152), (476, 139), (484, 108), (493, 54), (495, 31)]
1081: [(783, 745), (814, 711), (836, 685), (865, 648), (931, 549), (954, 508), (979, 458), (989, 436), (998, 415), (1025, 343), (1026, 340), (1053, 244), (1066, 179), (1078, 80), (1080, 46)]
1978: [(1404, 1393), (1462, 1332), (1540, 1241), (1582, 1187), (1651, 1089), (1738, 944), (1745, 931), (1792, 837), (1826, 760), (1862, 667), (1890, 583), (1899, 553), (1917, 487), (1936, 405), (1943, 370), (1957, 287), (1969, 188)]
2628: [(1880, 1836), (1991, 1715), (2033, 1665), (2046, 1649), (2058, 1634), (2102, 1577), (2145, 1518), (2204, 1431), (2300, 1271), (2319, 1236), (2349, 1178), (2352, 1172), (2397, 1077), (2418, 1029), (2426, 1010), (2523, 735), (2547, 647), (2552, 627), (2564, 576), (2585, 473), (2597, 402), (2622, 177), (2627, 72)]
9271: [(6631, 6479), (6713, 6394), (6939, 6148), (7003, 6075), (7137, 5917), (7380, 5611), (7417, 5562), (7612, 5292), (7667, 5212), (7912, 4832), (7987, 4707), (8018, 4654), (8180, 4363), (8207, 4312), (8374, 3978), (8383, 3959), (8424, 3871), (8558, 3565), (8613, 3430), (8656, 3320), (8770, 3006), (8801, 2914), (8900, 2596), (8917, 2537), (9016, 2159), (9062, 1957), (9082, 1862), (9153, 1474), (9162, 1417), (9207, 1087), (9214, 1026), (9229, 881), (9260, 451), (9261, 430), (9265, 333)]
a^3+ b^3 = c^3. : D
a^3+ b^3 = c^3est connu pour ne pas avoir de solutions entières; voir le dernier théorème de Fermat



21sortie[(17, 12), (20, 6), (12, 17), (6, 20)]