Douleur dans le Nash (C ++)
Ainsi appelé parce que le fait que je devais écrire mon propre solveur d'équilibre de Nash était une vraie douleur. Je suis surpris qu'il n'y ait pas de bibliothèques de résolution de Nash facilement disponibles!
#include <fstream>
#include <iostream>
#include <vector>
#include <array>
#include <random>
#include <utility>
typedef double NumT;
static const NumT EPSILON = 1e-5;
struct Index {
int me;
int them;
Index(int me, int them) : me(me), them(them) {}
};
struct Value {
NumT me;
NumT them;
Value(void) : me(0), them(0) {}
Value(NumT me, NumT them) : me(me), them(them) {}
};
template <int subDimMe, int subDimThem>
struct Game {
const std::array<NumT, 9> *valuesMe;
const std::array<NumT, 9> *valuesThemT;
std::array<int, subDimMe> coordsMe;
std::array<int, subDimThem> coordsThem;
Game(
const std::array<NumT, 9> *valuesMe,
const std::array<NumT, 9> *valuesThemT
)
: valuesMe(valuesMe)
, valuesThemT(valuesThemT)
, coordsMe{}
, coordsThem{}
{}
Index baseIndex(Index i) const {
return Index(coordsMe[i.me], coordsThem[i.them]);
}
Value at(Index i) const {
Index i2 = baseIndex(i);
return Value(
(*valuesMe)[i2.me * 3 + i2.them],
(*valuesThemT)[i2.me + i2.them * 3]
);
}
Game<2, 2> subgame22(int me0, int me1, int them0, int them1) const {
Game<2, 2> b(valuesMe, valuesThemT);
b.coordsMe[0] = coordsMe[me0];
b.coordsMe[1] = coordsMe[me1];
b.coordsThem[0] = coordsThem[them0];
b.coordsThem[1] = coordsThem[them1];
return b;
}
};
struct Strategy {
std::array<NumT, 3> probMe;
std::array<NumT, 3> probThem;
Value expectedValue;
bool valid;
Strategy(void)
: probMe{}
, probThem{}
, expectedValue()
, valid(false)
{}
void findBestMe(const Strategy &b) {
if(b.valid && (!valid || b.expectedValue.me > expectedValue.me)) {
*this = b;
}
}
};
template <int dimMe, int dimThem>
Strategy nash_pure(const Game<dimMe, dimThem> &g) {
Strategy s;
int choiceMe = -1;
int choiceThem = 0;
for(int me = 0; me < dimMe; ++ me) {
for(int them = 0; them < dimThem; ++ them) {
const Value &v = g.at(Index(me, them));
bool valid = true;
for(int me2 = 0; me2 < dimMe; ++ me2) {
if(g.at(Index(me2, them)).me > v.me) {
valid = false;
}
}
for(int them2 = 0; them2 < dimThem; ++ them2) {
if(g.at(Index(me, them2)).them > v.them) {
valid = false;
}
}
if(valid) {
if(choiceMe == -1 || v.me > s.expectedValue.me) {
s.expectedValue = v;
choiceMe = me;
choiceThem = them;
}
}
}
}
if(choiceMe != -1) {
Index iBase = g.baseIndex(Index(choiceMe, choiceThem));
s.probMe[iBase.me] = 1;
s.probThem[iBase.them] = 1;
s.valid = true;
}
return s;
}
Strategy nash_mixed(const Game<2, 2> &g) {
// P Q
// p a A b B
// q c C d D
Value A = g.at(Index(0, 0));
Value B = g.at(Index(0, 1));
Value C = g.at(Index(1, 0));
Value D = g.at(Index(1, 1));
// q = 1-p, Q = 1-P
// Pick p such that choice of P,Q is arbitrary
// p*A+(1-p)*C = p*B+(1-p)*D
// p*A+C-p*C = p*B+D-p*D
// p*(A+D-B-C) = D-C
// p = (D-C) / (A+D-B-C)
NumT p = (D.them - C.them) / (A.them + D.them - B.them - C.them);
// P*a+(1-P)*b = P*c+(1-P)*d
// P*a+b-P*b = P*c+d-P*d
// P*(a+d-b-c) = d-b
// P = (d-b) / (a+d-b-c)
NumT P = (D.me - B.me) / (A.me + D.me - B.me - C.me);
Strategy s;
if(p >= -EPSILON && p <= 1 + EPSILON && P >= -EPSILON && P <= 1 + EPSILON) {
if(p <= 0) {
p = 0;
} else if(p >= 1) {
p = 1;
}
if(P <= 0) {
P = 0;
} else if(P >= 1) {
P = 1;
}
Index iBase0 = g.baseIndex(Index(0, 0));
Index iBase1 = g.baseIndex(Index(1, 1));
s.probMe[iBase0.me] = p;
s.probMe[iBase1.me] = 1 - p;
s.probThem[iBase0.them] = P;
s.probThem[iBase1.them] = 1 - P;
s.expectedValue = Value(
P * A.me + (1 - P) * B.me,
p * A.them + (1 - p) * C.them
);
s.valid = true;
}
return s;
}
Strategy nash_mixed(const Game<3, 3> &g) {
// P Q R
// p a A b B c C
// q d D e E f F
// r g G h H i I
Value A = g.at(Index(0, 0));
Value B = g.at(Index(0, 1));
Value C = g.at(Index(0, 2));
Value D = g.at(Index(1, 0));
Value E = g.at(Index(1, 1));
Value F = g.at(Index(1, 2));
Value G = g.at(Index(2, 0));
Value H = g.at(Index(2, 1));
Value I = g.at(Index(2, 2));
// r = 1-p-q, R = 1-P-Q
// Pick p,q such that choice of P,Q,R is arbitrary
NumT q = ((
+ A.them * (I.them-H.them)
+ G.them * (B.them-C.them)
- B.them*I.them
+ H.them*C.them
) / (
(G.them+E.them-D.them-H.them) * (B.them+I.them-H.them-C.them) -
(H.them+F.them-E.them-I.them) * (A.them+H.them-G.them-B.them)
));
NumT p = (
((G.them+E.them-D.them-H.them) * q + (H.them-G.them)) /
(A.them+H.them-G.them-B.them)
);
NumT Q = ((
+ A.me * (I.me-F.me)
+ C.me * (D.me-G.me)
- D.me*I.me
+ F.me*G.me
) / (
(C.me+E.me-B.me-F.me) * (D.me+I.me-F.me-G.me) -
(F.me+H.me-E.me-I.me) * (A.me+F.me-C.me-D.me)
));
NumT P = (
((C.me+E.me-B.me-F.me) * Q + (F.me-C.me)) /
(A.me+F.me-C.me-D.me)
);
Strategy s;
if(
p >= -EPSILON && q >= -EPSILON && p + q <= 1 + EPSILON &&
P >= -EPSILON && Q >= -EPSILON && P + Q <= 1 + EPSILON
) {
if(p <= 0) { p = 0; }
if(q <= 0) { q = 0; }
if(P <= 0) { P = 0; }
if(Q <= 0) { Q = 0; }
if(p + q >= 1) {
if(p > q) {
p = 1 - q;
} else {
q = 1 - p;
}
}
if(P + Q >= 1) {
if(P > Q) {
P = 1 - Q;
} else {
Q = 1 - P;
}
}
Index iBase0 = g.baseIndex(Index(0, 0));
s.probMe[iBase0.me] = p;
s.probThem[iBase0.them] = P;
Index iBase1 = g.baseIndex(Index(1, 1));
s.probMe[iBase1.me] = q;
s.probThem[iBase1.them] = Q;
Index iBase2 = g.baseIndex(Index(2, 2));
s.probMe[iBase2.me] = 1 - p - q;
s.probThem[iBase2.them] = 1 - P - Q;
s.expectedValue = Value(
A.me * P + B.me * Q + C.me * (1 - P - Q),
A.them * p + D.them * q + G.them * (1 - p - q)
);
s.valid = true;
}
return s;
}
template <int dimMe, int dimThem>
Strategy nash_validate(Strategy &&s, const Game<dimMe, dimThem> &g, Index unused) {
if(!s.valid) {
return s;
}
NumT exp;
exp = 0;
for(int them = 0; them < dimThem; ++ them) {
exp += s.probThem[them] * g.at(Index(unused.me, them)).me;
}
if(exp > s.expectedValue.me) {
s.valid = false;
return s;
}
exp = 0;
for(int me = 0; me < dimMe; ++ me) {
exp += s.probMe[me] * g.at(Index(me, unused.them)).them;
}
if(exp > s.expectedValue.them) {
s.valid = false;
return s;
}
return s;
}
Strategy nash(const Game<2, 2> &g, bool verbose) {
Strategy s = nash_mixed(g);
s.findBestMe(nash_pure(g));
if(!s.valid && verbose) {
std::cerr << "No nash equilibrium found!" << std::endl;
}
return s;
}
Strategy nash(const Game<3, 3> &g, bool verbose) {
Strategy s = nash_mixed(g);
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 1, 2)), g, Index(0, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 0, 2)), g, Index(0, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 0, 1)), g, Index(0, 2)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 1, 2)), g, Index(1, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 0, 2)), g, Index(1, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 0, 1)), g, Index(1, 2)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 1, 2)), g, Index(2, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 0, 2)), g, Index(2, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 0, 1)), g, Index(2, 2)));
s.findBestMe(nash_pure(g));
if(!s.valid && verbose) {
// theory says this should never happen, but fp precision makes it possible
std::cerr << "No nash equilibrium found!" << std::endl;
}
return s;
}
struct PlayerState {
int balls;
int ducks;
PlayerState(int balls, int ducks) : balls(balls), ducks(ducks) {}
PlayerState doReload(int maxBalls) const {
return PlayerState(std::min(balls + 1, maxBalls), ducks);
}
PlayerState doThrow(void) const {
return PlayerState(std::max(balls - 1, 0), ducks);
}
PlayerState doDuck(void) const {
return PlayerState(balls, std::max(ducks - 1, 0));
}
std::array<double,3> flail(int maxBalls) const {
// opponent has obvious win;
// try stuff at random and hope the opponent is bad
(void) ducks;
int options = 0;
if(balls > 0) {
++ options;
}
if(balls < maxBalls) {
++ options;
}
if(ducks > 0) {
++ options;
}
std::array<double,3> p{};
if(balls < balls) {
p[0] = 1.0f / options;
}
if(balls > 0) {
p[1] = 1.0f / options;
}
return p;
}
};
class GameStore {
protected:
const int balls;
const int ducks;
const std::size_t playerStates;
const std::size_t gameStates;
public:
static std::string filename(int turn) {
return "nashdata_" + std::to_string(turn) + ".dat";
}
GameStore(int maxBalls, int maxDucks)
: balls(maxBalls)
, ducks(maxDucks)
, playerStates((balls + 1) * (ducks + 1))
, gameStates(playerStates * playerStates)
{}
std::size_t playerIndex(const PlayerState &p) const {
return p.balls * (ducks + 1) + p.ducks;
}
std::size_t gameIndex(const PlayerState &me, const PlayerState &them) const {
return playerIndex(me) * playerStates + playerIndex(them);
}
std::size_t fileIndex(const PlayerState &me, const PlayerState &them) const {
return 2 + gameIndex(me, them) * 2;
}
PlayerState stateFromPlayerIndex(std::size_t i) const {
return PlayerState(i / (ducks + 1), i % (ducks + 1));
}
std::pair<PlayerState, PlayerState> stateFromGameIndex(std::size_t i) const {
return std::make_pair(
stateFromPlayerIndex(i / playerStates),
stateFromPlayerIndex(i % playerStates)
);
}
std::pair<PlayerState, PlayerState> stateFromFileIndex(std::size_t i) const {
return stateFromGameIndex((i - 2) / 2);
}
};
class Generator : public GameStore {
static char toDat(NumT v) {
int iv = int(v * 256.0);
return char(std::max(std::min(iv, 255), 0));
}
std::vector<Value> next;
public:
Generator(int maxBalls, int maxDucks)
: GameStore(maxBalls, maxDucks)
, next()
{}
const Value &nextGame(const PlayerState &me, const PlayerState &them) const {
return next[gameIndex(me, them)];
}
void make_probabilities(
std::array<NumT, 9> &g,
const PlayerState &me,
const PlayerState &them
) const {
const int RELOAD = 0;
const int THROW = 1;
const int DUCK = 2;
g[RELOAD * 3 + RELOAD] =
nextGame(me.doReload(balls), them.doReload(balls)).me;
g[RELOAD * 3 + THROW] =
(them.balls > 0) ? -1
: nextGame(me.doReload(balls), them.doThrow()).me;
g[RELOAD * 3 + DUCK] =
nextGame(me.doReload(balls), them.doDuck()).me;
g[THROW * 3 + RELOAD] =
(me.balls > 0) ? 1
: nextGame(me.doThrow(), them.doReload(balls)).me;
g[THROW * 3 + THROW] =
((me.balls > 0) == (them.balls > 0))
? nextGame(me.doThrow(), them.doThrow()).me
: (me.balls > 0) ? 1 : -1;
g[THROW * 3 + DUCK] =
(me.balls > 0 && them.ducks == 0) ? 1
: nextGame(me.doThrow(), them.doDuck()).me;
g[DUCK * 3 + RELOAD] =
nextGame(me.doDuck(), them.doReload(balls)).me;
g[DUCK * 3 + THROW] =
(them.balls > 0 && me.ducks == 0) ? -1
: nextGame(me.doDuck(), them.doThrow()).me;
g[DUCK * 3 + DUCK] =
nextGame(me.doDuck(), them.doDuck()).me;
}
Game<3, 3> make_game(const PlayerState &me, const PlayerState &them) const {
static std::array<NumT, 9> globalValuesMe;
static std::array<NumT, 9> globalValuesThemT;
#pragma omp threadprivate(globalValuesMe)
#pragma omp threadprivate(globalValuesThemT)
make_probabilities(globalValuesMe, me, them);
make_probabilities(globalValuesThemT, them, me);
Game<3, 3> g(&globalValuesMe, &globalValuesThemT);
for(int i = 0; i < 3; ++ i) {
g.coordsMe[i] = i;
g.coordsThem[i] = i;
}
return g;
}
Strategy solve(const PlayerState &me, const PlayerState &them, bool verbose) const {
if(me.balls > them.balls + them.ducks) { // obvious answer
Strategy s;
s.probMe[1] = 1;
s.probThem = them.flail(balls);
s.expectedValue = Value(1, -1);
return s;
} else if(them.balls > me.balls + me.ducks) { // uh-oh
Strategy s;
s.probThem[1] = 1;
s.probMe = me.flail(balls);
s.expectedValue = Value(-1, 1);
return s;
} else if(me.balls == 0 && them.balls == 0) { // obvious answer
Strategy s;
s.probMe[0] = 1;
s.probThem[0] = 1;
s.expectedValue = nextGame(me.doReload(balls), them.doReload(balls));
return s;
} else {
return nash(make_game(me, them), verbose);
}
}
void generate(int turns, bool saveAll, bool verbose) {
next.clear();
next.resize(gameStates);
std::vector<Value> current(gameStates);
std::vector<char> data(2 + gameStates * 2);
for(std::size_t turn = turns; (turn --) > 0;) {
if(verbose) {
std::cerr << "Generating for turn " << turn << "..." << std::endl;
}
NumT maxDiff = 0;
NumT msd = 0;
data[0] = balls;
data[1] = ducks;
#pragma omp parallel for reduction(+:msd), reduction(max:maxDiff)
for(std::size_t meBalls = 0; meBalls < balls + 1; ++ meBalls) {
for(std::size_t meDucks = 0; meDucks < ducks + 1; ++ meDucks) {
const PlayerState me(meBalls, meDucks);
for(std::size_t themBalls = 0; themBalls < balls + 1; ++ themBalls) {
for(std::size_t themDucks = 0; themDucks < ducks + 1; ++ themDucks) {
const PlayerState them(themBalls, themDucks);
const std::size_t p1 = gameIndex(me, them);
Strategy s = solve(me, them, verbose);
NumT diff;
data[2+p1*2 ] = toDat(s.probMe[0]);
data[2+p1*2+1] = toDat(s.probMe[0] + s.probMe[1]);
current[p1] = s.expectedValue;
diff = current[p1].me - next[p1].me;
msd += diff * diff;
maxDiff = std::max(maxDiff, std::abs(diff));
}
}
}
}
if(saveAll) {
std::ofstream fs(filename(turn).c_str(), std::ios_base::binary);
fs.write(&data[0], data.size());
fs.close();
}
if(verbose) {
std::cerr
<< "Expectations changed by at most " << maxDiff
<< " (RMSD: " << std::sqrt(msd / gameStates) << ")" << std::endl;
}
if(maxDiff < 0.0001f) {
if(verbose) {
std::cerr << "Expectations have converged. Stopping." << std::endl;
}
break;
}
std::swap(next, current);
}
// Always save turn 0 with the final converged expectations
std::ofstream fs(filename(0).c_str(), std::ios_base::binary);
fs.write(&data[0], data.size());
fs.close();
}
};
void open_file(std::ifstream &target, int turn, int maxDucks, int maxBalls) {
target.open(GameStore::filename(turn).c_str(), std::ios::binary);
if(target.is_open()) {
return;
}
target.open(GameStore::filename(0).c_str(), std::ios::binary);
if(target.is_open()) {
return;
}
Generator(maxBalls, maxDucks).generate(200, false, false);
target.open(GameStore::filename(0).c_str(), std::ios::binary);
}
int choose(int turn, const PlayerState &me, const PlayerState &them, int maxBalls) {
std::ifstream fs;
open_file(fs, turn, std::max(me.ducks, them.ducks), maxBalls);
unsigned char balls = fs.get();
unsigned char ducks = fs.get();
fs.seekg(GameStore(balls, ducks).fileIndex(me, them));
unsigned char p0 = fs.get();
unsigned char p1 = fs.get();
fs.close();
// only 1 random number per execution; no need to seed a PRNG
std::random_device rand;
int v = std::uniform_int_distribution<int>(0, 254)(rand);
if(v < p0) {
return 0;
} else if(v < p1) {
return 1;
} else {
return 2;
}
}
int main(int argc, const char *const *argv) {
if(argc == 4) { // maxTurns, maxBalls, maxDucks
Generator(atoi(argv[2]), atoi(argv[3])).generate(atoi(argv[1]), true, true);
return 0;
}
if(argc == 7) { // turn, meBalls, themBalls, meDucks, themDucks, maxBalls
std::cout << choose(
atoi(argv[1]),
PlayerState(atoi(argv[2]), atoi(argv[4])),
PlayerState(atoi(argv[3]), atoi(argv[5])),
atoi(argv[6])
) << std::endl;
return 0;
}
return 1;
}
Compiler en C ++ 11 ou supérieur. Pour les performances, il est bon de compiler avec le support OpenMP (mais ceci est juste pour la vitesse, ce n'est pas obligatoire)
g++ -std=c++11 -fopenmp pain_in_the_nash.cpp -o pain_in_the_nash
Ceci utilise les équilibres de Nash pour décider quoi faire à chaque tour, ce qui signifie que théorie, il gagnera ou tirera toujours à long terme (sur de nombreux jeux), quelle que soit la stratégie utilisée par l'adversaire. Que ce soit le cas dans la pratique dépend de mon erreur dans la mise en œuvre. Cependant, comme cette compétition KoTH n’a qu’un seul tour contre chaque adversaire, elle n’ira probablement pas très bien au classement.
À l’origine, mon idée était d’avoir une fonction d’évaluation simple pour chaque état de jeu (chaque balle vaut + b, chaque canard est + d), mais cela pose des problèmes évidents pour déterminer quelle devrait être cette évaluation. agir sur les rendements décroissants de la collecte de plus en plus de balles, etc. Donc, au lieu de cela, cela va analyser tout l'arbre , en revenant du tour 1000, et complétera les évaluations réelles en fonction de la façon dont chaque jeu pourrait se dérouler.
Le résultat est que je ne sais absolument pas quelle stratégie cela utilise, à part quelques comportements "évidents" codés de manière irréversible (lancer des boules de neige si vous avez plus de balles que votre adversaire n'a de balles + canards, et recharger si vous êtes tous les deux dehors de boules de neige). Si quelqu'un veut analyser l'ensemble de données qu'il produit, j'imagine qu'il y a un comportement intéressant à découvrir!
Tester cela contre "Save One" montre qu’il gagne effectivement à long terme, mais seulement par une petite marge (514 victoires, 486 défaites, 0 nuls dans le premier lot de 1000 matchs, et 509 victoires, 491 défaites, 0 dessine dans la seconde).
Important!
Cela fonctionnera immédiatement, mais ce n'est pas une bonne idée. Il faut environ 9 minutes sur mon ordinateur portable moyennement développé par les développeurs pour générer l’arborescence complète du jeu. Mais cela enregistrera les probabilités finales dans un fichier une fois qu'elles seront générées. Après cela, chaque tour générera simplement un nombre aléatoire et le comparera à 2 octets, ce qui le rend ultra rapide.
Pour raccourcir tout cela, il suffit de télécharger ce fichier (3,5 Mo) et de le placer dans le répertoire contenant l'exécutable.
Ou vous pouvez le générer vous-même en exécutant:
./pain_in_the_nash 1000 50 25
Ce qui sauvera un fichier par tour, jusqu'à la convergence. Notez que chaque fichier fait 3,5 Mo et qu'il convergera au tour 720 (soit 280 fichiers, environ 1 Go), et comme la plupart des jeux ne se rapprochent pas du tour 720, les fichiers de pré-convergence ont une très faible importance.