Définitions
- Deux nombres sont co-premiers si leur seul diviseur commun positif est 1.
- Une liste de nombres est co-amorcée mutuellement si chaque paire de nombres de cette liste est co-amorcée les unes avec les autres.
- Une factorisation de nombre nest une liste de nombres dont le produit estn.
Tâche
Étant donné un nombre positif n, sortez la factorisation mutuellement co-prime de navec la longueur maximale qui ne comprend pas 1.
Exemple
Car n=60, la réponse est [3,4,5], car 3*4*5=60et aucune autre factorisation mutuellement co-prime sans 1a une longueur supérieure ou égale à 3, la longueur de la factorisation.
Règles et libertés
- Vous pouvez utiliser n'importe quel format d'entrée / sortie raisonnable.
- Les entrées de la liste de sortie n'ont pas besoin d'être triées.
Cas de test
n   output
1   []
2   [2]
3   [3]
4   [4]
5   [5]
6   [2, 3]
7   [7]
8   [8]
9   [9]
10  [2, 5]
11  [11]
12  [3, 4]
13  [13]
14  [2, 7]
15  [3, 5]
16  [16]
17  [17]
18  [2, 9]
19  [19]
20  [4, 5]
21  [3, 7]
22  [2, 11]
23  [23]
24  [3, 8]
25  [25]
26  [2, 13]
27  [27]
28  [4, 7]
29  [29]
30  [2, 3, 5]
31  [31]
32  [32]
33  [3, 11]
34  [2, 17]
35  [5, 7]
36  [4, 9]
37  [37]
38  [2, 19]
39  [3, 13]
40  [5, 8]
41  [41]
42  [2, 3, 7]
43  [43]
44  [4, 11]
45  [5, 9]
46  [2, 23]
47  [47]
48  [3, 16]
49  [49]
50  [2, 25]
51  [3, 17]
52  [4, 13]
53  [53]
54  [2, 27]
55  [5, 11]
56  [7, 8]
57  [3, 19]
58  [2, 29]
59  [59]
60  [3, 4, 5]
61  [61]
62  [2, 31]
63  [7, 9]
64  [64]
65  [5, 13]
66  [2, 3, 11]
67  [67]
68  [4, 17]
69  [3, 23]
70  [2, 5, 7]
71  [71]
72  [8, 9]
73  [73]
74  [2, 37]
75  [3, 25]
76  [4, 19]
77  [7, 11]
78  [2, 3, 13]
79  [79]
80  [5, 16]
81  [81]
82  [2, 41]
83  [83]
84  [3, 4, 7]
85  [5, 17]
86  [2, 43]
87  [3, 29]
88  [8, 11]
89  [89]
90  [2, 5, 9]
91  [7, 13]
92  [4, 23]
93  [3, 31]
94  [2, 47]
95  [5, 19]
96  [3, 32]
97  [97]
98  [2, 49]
99  [9, 11]
Notation
C'est du code-golf . La réponse la plus courte en octets l'emporte.
1.)