Python
L'encodage nécessite numpy , SciPy et scikit-image .
Le décodage ne nécessite que PIL .
Ceci est une méthode basée sur l'interpolation de superpixels. Pour commencer, chaque image est divisée en 70 régions de taille similaire et de couleur similaire. Par exemple, l'image de paysage est divisée de la manière suivante:
Le centre de gravité de chaque région est situé (jusqu'au point de trame le plus proche sur une grille ne contenant pas plus de 402 points), ainsi que sa couleur moyenne (à partir d'une palette de 216 couleurs), et chacune de ces régions est codée sous la forme d'un nombre de 0 à 86832 , capable d’être stockée dans 2,5 caractères ascii imprimables (en fait, 2 497 , laissant juste assez de place pour encoder un bit en niveaux de gris).
Si vous êtes attentif, vous avez peut-être remarqué que 140 / 2,5 = 56 régions et non pas 70 comme je l’ai dit plus tôt. Notez cependant que chacune de ces régions est un objet unique et comparable, qui peut être répertorié dans n'importe quel ordre. Pour cette raison, nous pouvons utiliser la permutation des 56 premières régions pour coder pour les 14 autres , tout en conservant quelques bits pour stocker le rapport de format.
Plus spécifiquement, chacune des 14 régions supplémentaires est convertie en un nombre, puis chacun de ces nombres est concaténé ensemble (en multipliant la valeur actuelle par 86832 et en ajoutant la suivante). Ce nombre (gigantesque) est ensuite converti en une permutation sur 56 objets.
Par exemple:
from my_geom import *
# this can be any value from 0 to 56!, and it will map unambiguously to a permutation
num = 595132299344106583056657556772129922314933943196204990085065194829854239
perm = num2perm(num, 56)
print perm
print perm2num(perm)
affichera:
[0, 3, 33, 13, 26, 22, 54, 12, 53, 47, 8, 39, 19, 51, 18, 27, 1, 41, 50, 20, 5, 29, 46, 9, 42, 23, 4, 37, 21, 49, 2, 6, 55, 52, 36, 7, 43, 11, 30, 10, 34, 44, 24, 45, 32, 28, 17, 35, 15, 25, 48, 40, 38, 31, 16, 14]
595132299344106583056657556772129922314933943196204990085065194829854239
La permutation résultante est ensuite appliquée aux 56 régions d'origine. Le nombre original (et donc les 14 régions supplémentaires ) peut également être extrait en convertissant la permutation des 56 régions codées en sa représentation numérique.
Lorsque l' --greyscale
option est utilisée avec le codeur, 94 régions sont utilisées ( 70 , 24 séparées ), avec 558 points de trame et 16 nuances de gris.
Lors du décodage, chacune de ces régions est traitée comme un cône 3D étendu à l'infini, avec son sommet au centre de la région, vu de dessus (diagramme de Voronoï). Les bordures sont ensuite mélangées pour créer le produit final.
Améliorations futures
Les dimensions de la Mona Lisa sont un peu décalées en raison de la façon dont je stocke les proportions. Je devrai utiliser un système différent. Corrigé, en supposant que le format d’aspect original se situe entre 1:21 et 21: 1, ce qui, à mon avis, est une hypothèse raisonnable.
Le Hindenburg pourrait être beaucoup amélioré. La palette de couleurs que j'utilise ne contient que 6 nuances de gris. Si j'introduisais un mode avec niveaux de gris uniquement, je pourrais utiliser les informations supplémentaires pour augmenter la profondeur de couleur, le nombre de régions, le nombre de points raster ou toute combinaison des trois. J'ai ajouté une --greyscale
option à l'encodeur, qui fait les trois.
Les formes 2D auraient probablement un meilleur aspect si le mélange était désactivé. Je vais probablement ajouter un drapeau pour cela. Ajout d'une option de codeur pour contrôler le taux de segmentation et d'une option de décodeur pour désactiver le mélange.
- Plus de plaisir avec la combinatoire. 56! est en fait assez grand pour stocker 15 régions supplémentaires et 15! est assez grand pour stocker 2 autres pour un total de 73 . Mais attendez, il y a plus! Le partitionnement de ces 73 objets pourrait également être utilisé pour stocker plus d'informations. Par exemple, il existe 73 manières de sélectionner les 56 régions initiales , puis 17 options pour choisir les 15 suivantes . Un total de 2403922132944423072 partitionnements, assez grand pour stocker 3 régions supplémentaires pour un total de 76. Je devrais trouver un moyen intelligent de numéroter de manière unique toutes les partitions de 73 en groupes de 56 , 15 , 2 ... et retour . Peut-être pas pratique, mais un problème intéressant à considérer.
0VW*`Gnyq;c1JBY}tj#rOcKm)v_Ac\S.r[>,Xd_(qT6 >]!xOfU9~0jmIMG{hcg-'*a.s<X]6*%U5>/FOze?cPv@hI)PjpK9\iA7P ]a-7eC&ttS[]K>NwN-^$T1E.1OH^c0^"J 4V9X
0Jc?NsbD#1WDuqT]AJFELu<!iE3d!BB>jOA'L|<j!lCWXkr:gCXuD=D\BL{gA\ 8#*RKQ*tv\\3V0j;_4|o7>{Xage-N85):Q/Hl4.t&'0pp)d|Ry+?|xrA6u&2E!Ls]i]T<~)58%RiA
et
4PV 9G7X|}>pC[Czd!5&rA5 Eo1Q\+m5t:r#;H65NIggfkw'h4*gs.:~<bt'VuVL7V8Ed5{`ft7e>HMHrVVUXc.{#7A|#PBm,i>1B781.K8>s(yUV?a<*!mC@9p+Rgd<twZ.wuFnN dp
Le second encodé avec l' --greyscale
option.
3dVY3TY?9g+b7!5n`)l"Fg H$ 8n?[Q-4HE3.c:[pBBaH`5'MotAj%a4rIodYO.lp$h a94$n!M+Y?(eAR,@Y*LiKnz%s0rFpgnWy%!zV)?SuATmc~-ZQardp=?D5FWx;v=VA+]EJ(:%
Encodé avec l' --greyscale
option.
.9l% Ge<'_)3(`DTsH^eLn|l3.D_na,,sfcpnp{"|lSv<>}3b})%m2M)Ld{YUmf<Uill,*:QNGk,'f2; !2i88T:Yjqa8\Ktz4i@h2kHeC|9,P` v7Xzd Yp&z:'iLra&X&-b(g6vMq
Encodé avec --ratio 60
et décodé avec des --no-blending
options.
encoder.py
from __future__ import division
import argparse, numpy
from skimage.io import imread
from skimage.transform import resize
from skimage.segmentation import slic
from skimage.measure import regionprops
from my_geom import *
def encode(filename, seg_ratio, greyscale):
img = imread(filename)
height = len(img)
width = len(img[0])
ratio = width/height
if greyscale:
raster_size = 558
raster_ratio = 11
num_segs = 94
set1_len = 70
max_num = 8928 # 558 * 16
else:
raster_size = 402
raster_ratio = 13
num_segs = 70
set1_len = 56
max_num = 86832 # 402 * 216
raster_width = (raster_size*ratio)**0.5
raster_height = int(raster_width/ratio)
raster_width = int(raster_width)
resize_height = raster_height * raster_ratio
resize_width = raster_width * raster_ratio
img = resize(img, (resize_height, resize_width))
segs = slic(img, n_segments=num_segs-4, ratio=seg_ratio).astype('int16')
max_label = segs.max()
numpy.place(segs, segs==0, [max_label+1])
regions = [None]*(max_label+2)
for props in regionprops(segs):
label = props['Label']
props['Greyscale'] = greyscale
regions[label] = Region(props)
for i, a in enumerate(regions):
for j, b in enumerate(regions):
if a==None or b==None or a==b: continue
if a.centroid == b.centroid:
numpy.place(segs, segs==j, [i])
regions[j] = None
for y in range(resize_height):
for x in range(resize_width):
label = segs[y][x]
regions[label].add_point(img[y][x])
regions = [r for r in regions if r != None]
if len(regions)>num_segs:
regions = sorted(regions, key=lambda r: r.area)[-num_segs:]
regions = sorted(regions, key=lambda r: r.to_num(raster_width))
set1, set2 = regions[-set1_len:], regions[:-set1_len]
set2_num = 0
for s in set2:
set2_num *= max_num
set2_num += s.to_num(raster_width)
set2_num = ((set2_num*85 + raster_width)*85 + raster_height)*25 + len(set2)
perm = num2perm(set2_num, set1_len)
set1 = permute(set1, perm)
outnum = 0
for r in set1:
outnum *= max_num
outnum += r.to_num(raster_width)
outnum *= 2
outnum += greyscale
outstr = ''
for i in range(140):
outstr = chr(32 + outnum%95) + outstr
outnum //= 95
print outstr
parser = argparse.ArgumentParser(description='Encodes an image into a tweetable format.')
parser.add_argument('filename', type=str,
help='The filename of the image to encode.')
parser.add_argument('--ratio', dest='seg_ratio', type=float, default=30,
help='The segmentation ratio. Higher values (50+) will result in more regular shapes, lower values in more regular region color.')
parser.add_argument('--greyscale', dest='greyscale', action='store_true',
help='Encode the image as greyscale.')
args = parser.parse_args()
encode(args.filename, args.seg_ratio, args.greyscale)
decoder.py
from __future__ import division
import argparse
from PIL import Image, ImageDraw, ImageChops, ImageFilter
from my_geom import *
def decode(instr, no_blending=False):
innum = 0
for c in instr:
innum *= 95
innum += ord(c) - 32
greyscale = innum%2
innum //= 2
if greyscale:
max_num = 8928
set1_len = 70
image_mode = 'L'
default_color = 0
raster_ratio = 11
else:
max_num = 86832
set1_len = 56
image_mode = 'RGB'
default_color = (0, 0, 0)
raster_ratio = 13
nums = []
for i in range(set1_len):
nums = [innum%max_num] + nums
innum //= max_num
set2_num = perm2num(nums)
set2_len = set2_num%25
set2_num //= 25
raster_height = set2_num%85
set2_num //= 85
raster_width = set2_num%85
set2_num //= 85
resize_width = raster_width*raster_ratio
resize_height = raster_height*raster_ratio
for i in range(set2_len):
nums += set2_num%max_num,
set2_num //= max_num
regions = []
for num in nums:
r = Region()
r.from_num(num, raster_width, greyscale)
regions += r,
masks = []
outimage = Image.new(image_mode, (resize_width, resize_height), default_color)
for a in regions:
mask = Image.new('L', (resize_width, resize_height), 255)
for b in regions:
if a==b: continue
submask = Image.new('L', (resize_width, resize_height), 0)
poly = a.centroid.bisected_poly(b.centroid, resize_width, resize_height)
ImageDraw.Draw(submask).polygon(poly, fill=255, outline=255)
mask = ImageChops.multiply(mask, submask)
outimage.paste(a.avg_color, mask=mask)
if not no_blending:
outimage = outimage.resize((raster_width, raster_height), Image.ANTIALIAS)
outimage = outimage.resize((resize_width, resize_height), Image.BICUBIC)
smooth = ImageFilter.Kernel((3,3),(1,2,1,2,4,2,1,2,1))
for i in range(20):outimage = outimage.filter(smooth)
outimage.show()
parser = argparse.ArgumentParser(description='Decodes a tweet into and image.')
parser.add_argument('--no-blending', dest='no_blending', action='store_true',
help="Do not blend the borders in the final image.")
args = parser.parse_args()
instr = raw_input()
decode(instr, args.no_blending)
my_geom.py
from __future__ import division
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
self.xy = (x, y)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def __lt__(self, other):
return self.y < other.y or (self.y == other.y and self.x < other.x)
def inv_slope(self, other):
return (other.x - self.x)/(self.y - other.y)
def midpoint(self, other):
return Point((self.x + other.x)/2, (self.y + other.y)/2)
def dist2(self, other):
dx = self.x - other.x
dy = self.y - other.y
return dx*dx + dy*dy
def bisected_poly(self, other, resize_width, resize_height):
midpoint = self.midpoint(other)
points = []
if self.y == other.y:
points += (midpoint.x, 0), (midpoint.x, resize_height)
if self.x < midpoint.x:
points += (0, resize_height), (0, 0)
else:
points += (resize_width, resize_height), (resize_width, 0)
return points
elif self.x == other.x:
points += (0, midpoint.y), (resize_width, midpoint.y)
if self.y < midpoint.y:
points += (resize_width, 0), (0, 0)
else:
points += (resize_width, resize_height), (0, resize_height)
return points
slope = self.inv_slope(other)
y_intercept = midpoint.y - slope*midpoint.x
if self.y > midpoint.y:
points += ((resize_height - y_intercept)/slope, resize_height),
if slope < 0:
points += (resize_width, slope*resize_width + y_intercept), (resize_width, resize_height)
else:
points += (0, y_intercept), (0, resize_height)
else:
points += (-y_intercept/slope, 0),
if slope < 0:
points += (0, y_intercept), (0, 0)
else:
points += (resize_width, slope*resize_width + y_intercept), (resize_width, 0)
return points
class Region:
def __init__(self, props={}):
if props:
self.greyscale = props['Greyscale']
self.area = props['Area']
cy, cx = props['Centroid']
if self.greyscale:
self.centroid = Point(int(cx/11)*11+5, int(cy/11)*11+5)
else:
self.centroid = Point(int(cx/13)*13+6, int(cy/13)*13+6)
self.num_pixels = 0
self.r_total = 0
self.g_total = 0
self.b_total = 0
def __lt__(self, other):
return self.centroid < other.centroid
def add_point(self, rgb):
r, g, b = rgb
self.r_total += r
self.g_total += g
self.b_total += b
self.num_pixels += 1
if self.greyscale:
self.avg_color = int((3.2*self.r_total + 10.7*self.g_total + 1.1*self.b_total)/self.num_pixels + 0.5)*17
else:
self.avg_color = (
int(5*self.r_total/self.num_pixels + 0.5)*51,
int(5*self.g_total/self.num_pixels + 0.5)*51,
int(5*self.b_total/self.num_pixels + 0.5)*51)
def to_num(self, raster_width):
if self.greyscale:
raster_x = int((self.centroid.x - 5)/11)
raster_y = int((self.centroid.y - 5)/11)
return (raster_y*raster_width + raster_x)*16 + self.avg_color//17
else:
r, g, b = self.avg_color
r //= 51
g //= 51
b //= 51
raster_x = int((self.centroid.x - 6)/13)
raster_y = int((self.centroid.y - 6)/13)
return (raster_y*raster_width + raster_x)*216 + r*36 + g*6 + b
def from_num(self, num, raster_width, greyscale):
self.greyscale = greyscale
if greyscale:
self.avg_color = num%16*17
num //= 16
raster_x, raster_y = num%raster_width, num//raster_width
self.centroid = Point(raster_x*11 + 5, raster_y*11+5)
else:
rgb = num%216
r, g, b = rgb//36, rgb//6%6, rgb%6
self.avg_color = (r*51, g*51, b*51)
num //= 216
raster_x, raster_y = num%raster_width, num//raster_width
self.centroid = Point(raster_x*13 + 6, raster_y*13 + 6)
def perm2num(perm):
num = 0
size = len(perm)
for i in range(size):
num *= size-i
for j in range(i, size): num += perm[j]<perm[i]
return num
def num2perm(num, size):
perm = [0]*size
for i in range(size-1, -1, -1):
perm[i] = int(num%(size-i))
num //= size-i
for j in range(i+1, size): perm[j] += perm[j] >= perm[i]
return perm
def permute(arr, perm):
size = len(arr)
out = [0] * size
for i in range(size):
val = perm[i]
out[i] = arr[val]
return out