Votre tâche sera de prendre une chaîne équilibrée et un entier représentant une distance Levenshtein (le nombre de caractères qui doivent être insérés, supprimés ou modifiés pour transformer une chaîne en une autre) et vous devez trouver le nombre de chaînes équilibrées avec cette distance à partir de la chaîne d'origine (c'est-à-dire le voisinage de cette chaîne).
Stipulations
Les chaînes équilibrées se composeront uniquement des caractères
()<>[]{}
Il vous sera seulement demandé de trouver des quartiers pour des distances égales positives
L'entrée et la sortie sont flexibles. Tant que vous prenez toutes les données appropriées et que vous sortez la bonne réponse sans violer les lacunes, je suis satisfait de votre réponse.
Vous pouvez choisir de diviser toutes vos entrées entières par 2 si vous le souhaitez.
C'est du code-golf donc l'objectif est de minimiser le nombre d'octets dans votre réponse
Cela a été inspiré par ce CMC et cette réponse
Cas de test
Case | Distance | Size of Neighborhood
--------------------------------------------
() | 2 | 18
({}) | 2 | 33
(()) | 2 | 32
<> | 4 | 186
[][] | 4 | 688
<(){}> | 4 | 1379
{} | 6 | 2270
[]{}[] | 6 | 41097
Voici quelques petits exemples avec les quartiers réels inclus:
(), 2 :
{'', '<>', '()[]', '()()', '(())', '([])', '()<>', '{}', '{()}', '<>()', '(){}', '{}()', '<()>', '(<>)', '[()]', '[]()', '({})', '[]'}
({}), 2 :
{'([]{})', '()', '{}', '<({})>', '({<>})', '<{}>', '({()})', '(<>{})', '({}<>)', '({[]})', '(({}))', '({{}})', '({}[])', '{({})}', '({})()', '{}({})', '(())', '()({})', '([])', '<>({})', '({}{})', '({}){}', '({})<>', '(<{}>)', '({})[]', '((){})', '[{}]', '{{}}', '[]({})', '(<>)', '({}())', '([{}])', '[({})]'}
(()), 2 :
{'(())[]', '<>(())', '()', '{}(())', '{()}', '({()})', '{(())}', '(([]))', '(({}))', '(()[])', '(())<>', '((()))', '([])', '((<>))', '()(())', '(<()>)', '([()])', '[(())]', '(()){}', '(())()', '(()())', '(<>())', '(()<>)', '((){})', '<(())>', '<()>', '([]())', '(<>)', '({}())', '[()]', '({})', '[](())'}
<>, 4 :
{'<><<>>', '(<>)<>', '[<>][]', '<<><>>', '(){<>}', '(<>)()', '[<()>]', '<({})>', '<>()<>', '<[<>]>', '[][]<>', '<>[]<>', '<><><>', '[]<{}>', '[]<<>>', '[]<><>', '{<><>}', '[{<>}]', '<(<>)>', '(())<>', '{}<>{}', '()(<>)', '{()<>}', '(())', '{<>{}}', '(<><>)', '([])<>', '[]<[]>', '<{}<>>', '<><()>', '{()}<>', '{{}}<>', '{<>()}', '<<>>()', '{<<>>}', '<()>()', '<[]>()', '<>[<>]', '(<>())', '{}<>()', '(()<>)', '[{}]', '{{}}', '[]()', '[(<>)]', '<{}[]>', '<<>>[]', '{}<()>', '<>', '[()]<>', '<()><>', '[[]]<>', '[{}]<>', '[]<>[]', '()[<>]', '[]<>()', '{<>}{}', '{<[]>}', '<>(<>)', '(<>)[]', '<{}>()', '{}<><>', '{<>}()', '{[]}', '{[]}<>', '<<<>>>', '[]<()>', '<<[]>>', '<<{}>>', '[[]]', '()()<>', '[]{<>}', '<><[]>', '[[]<>]', '<{}()>', '<{<>}>', '<[]{}>', '{}<{}>', '<{}>[]', '()<<>>', '(<()>)', '[]{}', '{{}<>}', '{}()', '()<>[]', '<{}><>', '{[<>]}', '<><{}>', '<(())>', '<><>{}', '[()]', '<<>>{}', '{}{}<>', '[<<>>]', '<[][]>', '(<<>>)', '<[]><>', '[<>]<>', '[<>[]]', '[{}<>]', '{()}', '{<>[]}', '[]{}<>', '{(<>)}', '(<[]>)', '()[]<>', '<>{<>}', '{[]<>}', '(<>{})', '({}<>)', '[<><>]', '<><>()', '{}[<>]', '<{[]}>', '<<()>>', '<<>{}>', '([<>])', '<[]()>', '()()', '([])', '[[<>]]', '((<>))', '[](<>)', '(){}<>', '[()<>]', '<([])>', '<()()>', '[][]', '<<>[]>', '[<[]>]', '({})<>', '<{{}}>', '<[{}]>', '<{}{}>', '{}(<>)', '<<>><>', '[<>()]', '[][<>]', '({})', '{}[]<>', '{}<[]>', '<[()]>', '()[]', '<()>[]', '{{<>}}', '(<>){}', '{}{}', '({<>})', '{<()>}', '{}{<>}', '[]()<>', '<[]>[]', '(<>[])', '<[]>{}', '{}()<>', '()<[]>', '()<{}>', '{}<<>>', '<{}>{}', '{}[]', '()<>{}', '<()<>>', '[<>{}]', '{<>}[]', '<<>()>', '<><>[]', '{<{}>}', '<()[]>', '()<><>', '[<>]()', '()<>()', '{}<>[]', '<{()}>', '(<{}>)', '(){}', '()<()>', '<(){}>', '{<>}<>', '<[[]]>', '[]<>{}', '([]<>)', '<[]<>>', '[<>]{}', '<()>{}', '<>{}<>', '[<{}>]'}